Pyramid neural network image defogging method and system based on end-to-end multi-size fusion

The invention discloses a pyramid neural network image defogging method and system based on end-to-end multi-size fusion. Five groups of feature maps of a foggy image in different sizes and sub-regions are extracted by using a backbone network in an image defogging model; performing feature enhancem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CAI RONGHUI, HUANG JINGUI, WANG SHENGCHUN, CHEN PEIQI, GE JINGJING, LUO YINGGUANG, YE CHENGZHI, TIAN BIN, LIU LIANYE, JI JUNWEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CAI RONGHUI
HUANG JINGUI
WANG SHENGCHUN
CHEN PEIQI
GE JINGJING
LUO YINGGUANG
YE CHENGZHI
TIAN BIN
LIU LIANYE
JI JUNWEI
description The invention discloses a pyramid neural network image defogging method and system based on end-to-end multi-size fusion. Five groups of feature maps of a foggy image in different sizes and sub-regions are extracted by using a backbone network in an image defogging model; performing feature enhancement on the five groups of feature maps by using a feature pyramid network structure in the image defogging model to obtain five groups of feature maps after feature enhancement; fusing the five groups of feature maps through a spatial multi-size feature superposition fusion method to obtain fused features; a decoder in the image defogging model is used for further fusing and decoding the fused features to obtain intermediate estimation parameters of the network; and reconstructing the network intermediate estimation parameter and an original foggy image input by the network by using a physical recovery module to obtain a fogless image. According to the method, the local features and the global features can be fused
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115063304A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115063304A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115063304A3</originalsourceid><addsrcrecordid>eNqNzbEKwjAQgOEuDqK-w_kAgZaouxTFSRycLae5xsMmV3oJUp_eDj6A07f88M-L22UcMLCDSHnAbiK9ZXgBB_QEjlrxnqOHQOkpDjA60FETBbijkgOJQNGZJGYCQu4SG-UPQZuVJS6LWYud0urnolgfD9f6ZKiXhrTHB03Hpj5X1bbcWVtu9vaf5gspFzxO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Pyramid neural network image defogging method and system based on end-to-end multi-size fusion</title><source>esp@cenet</source><creator>CAI RONGHUI ; HUANG JINGUI ; WANG SHENGCHUN ; CHEN PEIQI ; GE JINGJING ; LUO YINGGUANG ; YE CHENGZHI ; TIAN BIN ; LIU LIANYE ; JI JUNWEI</creator><creatorcontrib>CAI RONGHUI ; HUANG JINGUI ; WANG SHENGCHUN ; CHEN PEIQI ; GE JINGJING ; LUO YINGGUANG ; YE CHENGZHI ; TIAN BIN ; LIU LIANYE ; JI JUNWEI</creatorcontrib><description>The invention discloses a pyramid neural network image defogging method and system based on end-to-end multi-size fusion. Five groups of feature maps of a foggy image in different sizes and sub-regions are extracted by using a backbone network in an image defogging model; performing feature enhancement on the five groups of feature maps by using a feature pyramid network structure in the image defogging model to obtain five groups of feature maps after feature enhancement; fusing the five groups of feature maps through a spatial multi-size feature superposition fusion method to obtain fused features; a decoder in the image defogging model is used for further fusing and decoding the fused features to obtain intermediate estimation parameters of the network; and reconstructing the network intermediate estimation parameter and an original foggy image input by the network by using a physical recovery module to obtain a fogless image. According to the method, the local features and the global features can be fused</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220916&amp;DB=EPODOC&amp;CC=CN&amp;NR=115063304A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220916&amp;DB=EPODOC&amp;CC=CN&amp;NR=115063304A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CAI RONGHUI</creatorcontrib><creatorcontrib>HUANG JINGUI</creatorcontrib><creatorcontrib>WANG SHENGCHUN</creatorcontrib><creatorcontrib>CHEN PEIQI</creatorcontrib><creatorcontrib>GE JINGJING</creatorcontrib><creatorcontrib>LUO YINGGUANG</creatorcontrib><creatorcontrib>YE CHENGZHI</creatorcontrib><creatorcontrib>TIAN BIN</creatorcontrib><creatorcontrib>LIU LIANYE</creatorcontrib><creatorcontrib>JI JUNWEI</creatorcontrib><title>Pyramid neural network image defogging method and system based on end-to-end multi-size fusion</title><description>The invention discloses a pyramid neural network image defogging method and system based on end-to-end multi-size fusion. Five groups of feature maps of a foggy image in different sizes and sub-regions are extracted by using a backbone network in an image defogging model; performing feature enhancement on the five groups of feature maps by using a feature pyramid network structure in the image defogging model to obtain five groups of feature maps after feature enhancement; fusing the five groups of feature maps through a spatial multi-size feature superposition fusion method to obtain fused features; a decoder in the image defogging model is used for further fusing and decoding the fused features to obtain intermediate estimation parameters of the network; and reconstructing the network intermediate estimation parameter and an original foggy image input by the network by using a physical recovery module to obtain a fogless image. According to the method, the local features and the global features can be fused</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzbEKwjAQgOEuDqK-w_kAgZaouxTFSRycLae5xsMmV3oJUp_eDj6A07f88M-L22UcMLCDSHnAbiK9ZXgBB_QEjlrxnqOHQOkpDjA60FETBbijkgOJQNGZJGYCQu4SG-UPQZuVJS6LWYud0urnolgfD9f6ZKiXhrTHB03Hpj5X1bbcWVtu9vaf5gspFzxO</recordid><startdate>20220916</startdate><enddate>20220916</enddate><creator>CAI RONGHUI</creator><creator>HUANG JINGUI</creator><creator>WANG SHENGCHUN</creator><creator>CHEN PEIQI</creator><creator>GE JINGJING</creator><creator>LUO YINGGUANG</creator><creator>YE CHENGZHI</creator><creator>TIAN BIN</creator><creator>LIU LIANYE</creator><creator>JI JUNWEI</creator><scope>EVB</scope></search><sort><creationdate>20220916</creationdate><title>Pyramid neural network image defogging method and system based on end-to-end multi-size fusion</title><author>CAI RONGHUI ; HUANG JINGUI ; WANG SHENGCHUN ; CHEN PEIQI ; GE JINGJING ; LUO YINGGUANG ; YE CHENGZHI ; TIAN BIN ; LIU LIANYE ; JI JUNWEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115063304A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CAI RONGHUI</creatorcontrib><creatorcontrib>HUANG JINGUI</creatorcontrib><creatorcontrib>WANG SHENGCHUN</creatorcontrib><creatorcontrib>CHEN PEIQI</creatorcontrib><creatorcontrib>GE JINGJING</creatorcontrib><creatorcontrib>LUO YINGGUANG</creatorcontrib><creatorcontrib>YE CHENGZHI</creatorcontrib><creatorcontrib>TIAN BIN</creatorcontrib><creatorcontrib>LIU LIANYE</creatorcontrib><creatorcontrib>JI JUNWEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CAI RONGHUI</au><au>HUANG JINGUI</au><au>WANG SHENGCHUN</au><au>CHEN PEIQI</au><au>GE JINGJING</au><au>LUO YINGGUANG</au><au>YE CHENGZHI</au><au>TIAN BIN</au><au>LIU LIANYE</au><au>JI JUNWEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Pyramid neural network image defogging method and system based on end-to-end multi-size fusion</title><date>2022-09-16</date><risdate>2022</risdate><abstract>The invention discloses a pyramid neural network image defogging method and system based on end-to-end multi-size fusion. Five groups of feature maps of a foggy image in different sizes and sub-regions are extracted by using a backbone network in an image defogging model; performing feature enhancement on the five groups of feature maps by using a feature pyramid network structure in the image defogging model to obtain five groups of feature maps after feature enhancement; fusing the five groups of feature maps through a spatial multi-size feature superposition fusion method to obtain fused features; a decoder in the image defogging model is used for further fusing and decoding the fused features to obtain intermediate estimation parameters of the network; and reconstructing the network intermediate estimation parameter and an original foggy image input by the network by using a physical recovery module to obtain a fogless image. According to the method, the local features and the global features can be fused</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115063304A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Pyramid neural network image defogging method and system based on end-to-end multi-size fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CAI%20RONGHUI&rft.date=2022-09-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115063304A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true