Intelligent electric meter state evaluation method based on multi-agent reinforcement learning
The invention provides an intelligent electric meter state evaluation method based on multi-agent reinforcement learning, and belongs to the technical field of electric power system state evaluation. The problems of inaccurate state evaluation and poor model universality of a traditional intelligent...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | FAN WEIXING ZHANG XUDONG XUE YIFEI GUO HAO JIA ZHENHUA HOU CHAOHANG LI WENBIAO YIN HUANWEN XU ZIHAO SHEN CHAOHUI WANG XING WANG JINGYAO |
description | The invention provides an intelligent electric meter state evaluation method based on multi-agent reinforcement learning, and belongs to the technical field of electric power system state evaluation. The problems of inaccurate state evaluation and poor model universality of a traditional intelligent electric meter are solved; comprising the following steps: preprocessing data of an intelligent electric meter; constructing a multi-agent reinforcement learning model: setting reinforcement learning agents, setting the state, action and decision of reinforcement learning, and setting a reward and punishment function of reinforcement learning; a decision matrix is initialized, proper actions are selected based on an epsilon-greedy algorithm, reward and punishment feedback of the environment to the agents is obtained, the states of the agents are updated through the reward and punishment feedback, and whether all the agents obtain optimal control strategies or not is judged; inputting the preprocessed data into the |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115062871A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115062871A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115062871A3</originalsourceid><addsrcrecordid>eNqNi8sKwjAQRbtxIeo_xA8oGMXHVoqiG1euLWN6WwPTSUmmfr9E_ABXh3O4d1o8rqJg9h1EDRhOo3emhyKapKQweBOPpD5Izq_QmCclNCb7yOpL-n4jvLQhOvTZGBTFSzcvJi1xwuLHWbE8n-7VpcQQaqSBHARaVzdrt6vd-rC3x80_mw-bij1I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent electric meter state evaluation method based on multi-agent reinforcement learning</title><source>esp@cenet</source><creator>FAN WEIXING ; ZHANG XUDONG ; XUE YIFEI ; GUO HAO ; JIA ZHENHUA ; HOU CHAOHANG ; LI WENBIAO ; YIN HUANWEN ; XU ZIHAO ; SHEN CHAOHUI ; WANG XING ; WANG JINGYAO</creator><creatorcontrib>FAN WEIXING ; ZHANG XUDONG ; XUE YIFEI ; GUO HAO ; JIA ZHENHUA ; HOU CHAOHANG ; LI WENBIAO ; YIN HUANWEN ; XU ZIHAO ; SHEN CHAOHUI ; WANG XING ; WANG JINGYAO</creatorcontrib><description>The invention provides an intelligent electric meter state evaluation method based on multi-agent reinforcement learning, and belongs to the technical field of electric power system state evaluation. The problems of inaccurate state evaluation and poor model universality of a traditional intelligent electric meter are solved; comprising the following steps: preprocessing data of an intelligent electric meter; constructing a multi-agent reinforcement learning model: setting reinforcement learning agents, setting the state, action and decision of reinforcement learning, and setting a reward and punishment function of reinforcement learning; a decision matrix is initialized, proper actions are selected based on an epsilon-greedy algorithm, reward and punishment feedback of the environment to the agents is obtained, the states of the agents are updated through the reward and punishment feedback, and whether all the agents obtain optimal control strategies or not is judged; inputting the preprocessed data into the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220916&DB=EPODOC&CC=CN&NR=115062871A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220916&DB=EPODOC&CC=CN&NR=115062871A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FAN WEIXING</creatorcontrib><creatorcontrib>ZHANG XUDONG</creatorcontrib><creatorcontrib>XUE YIFEI</creatorcontrib><creatorcontrib>GUO HAO</creatorcontrib><creatorcontrib>JIA ZHENHUA</creatorcontrib><creatorcontrib>HOU CHAOHANG</creatorcontrib><creatorcontrib>LI WENBIAO</creatorcontrib><creatorcontrib>YIN HUANWEN</creatorcontrib><creatorcontrib>XU ZIHAO</creatorcontrib><creatorcontrib>SHEN CHAOHUI</creatorcontrib><creatorcontrib>WANG XING</creatorcontrib><creatorcontrib>WANG JINGYAO</creatorcontrib><title>Intelligent electric meter state evaluation method based on multi-agent reinforcement learning</title><description>The invention provides an intelligent electric meter state evaluation method based on multi-agent reinforcement learning, and belongs to the technical field of electric power system state evaluation. The problems of inaccurate state evaluation and poor model universality of a traditional intelligent electric meter are solved; comprising the following steps: preprocessing data of an intelligent electric meter; constructing a multi-agent reinforcement learning model: setting reinforcement learning agents, setting the state, action and decision of reinforcement learning, and setting a reward and punishment function of reinforcement learning; a decision matrix is initialized, proper actions are selected based on an epsilon-greedy algorithm, reward and punishment feedback of the environment to the agents is obtained, the states of the agents are updated through the reward and punishment feedback, and whether all the agents obtain optimal control strategies or not is judged; inputting the preprocessed data into the</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi8sKwjAQRbtxIeo_xA8oGMXHVoqiG1euLWN6WwPTSUmmfr9E_ABXh3O4d1o8rqJg9h1EDRhOo3emhyKapKQweBOPpD5Izq_QmCclNCb7yOpL-n4jvLQhOvTZGBTFSzcvJi1xwuLHWbE8n-7VpcQQaqSBHARaVzdrt6vd-rC3x80_mw-bij1I</recordid><startdate>20220916</startdate><enddate>20220916</enddate><creator>FAN WEIXING</creator><creator>ZHANG XUDONG</creator><creator>XUE YIFEI</creator><creator>GUO HAO</creator><creator>JIA ZHENHUA</creator><creator>HOU CHAOHANG</creator><creator>LI WENBIAO</creator><creator>YIN HUANWEN</creator><creator>XU ZIHAO</creator><creator>SHEN CHAOHUI</creator><creator>WANG XING</creator><creator>WANG JINGYAO</creator><scope>EVB</scope></search><sort><creationdate>20220916</creationdate><title>Intelligent electric meter state evaluation method based on multi-agent reinforcement learning</title><author>FAN WEIXING ; ZHANG XUDONG ; XUE YIFEI ; GUO HAO ; JIA ZHENHUA ; HOU CHAOHANG ; LI WENBIAO ; YIN HUANWEN ; XU ZIHAO ; SHEN CHAOHUI ; WANG XING ; WANG JINGYAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115062871A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>FAN WEIXING</creatorcontrib><creatorcontrib>ZHANG XUDONG</creatorcontrib><creatorcontrib>XUE YIFEI</creatorcontrib><creatorcontrib>GUO HAO</creatorcontrib><creatorcontrib>JIA ZHENHUA</creatorcontrib><creatorcontrib>HOU CHAOHANG</creatorcontrib><creatorcontrib>LI WENBIAO</creatorcontrib><creatorcontrib>YIN HUANWEN</creatorcontrib><creatorcontrib>XU ZIHAO</creatorcontrib><creatorcontrib>SHEN CHAOHUI</creatorcontrib><creatorcontrib>WANG XING</creatorcontrib><creatorcontrib>WANG JINGYAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FAN WEIXING</au><au>ZHANG XUDONG</au><au>XUE YIFEI</au><au>GUO HAO</au><au>JIA ZHENHUA</au><au>HOU CHAOHANG</au><au>LI WENBIAO</au><au>YIN HUANWEN</au><au>XU ZIHAO</au><au>SHEN CHAOHUI</au><au>WANG XING</au><au>WANG JINGYAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent electric meter state evaluation method based on multi-agent reinforcement learning</title><date>2022-09-16</date><risdate>2022</risdate><abstract>The invention provides an intelligent electric meter state evaluation method based on multi-agent reinforcement learning, and belongs to the technical field of electric power system state evaluation. The problems of inaccurate state evaluation and poor model universality of a traditional intelligent electric meter are solved; comprising the following steps: preprocessing data of an intelligent electric meter; constructing a multi-agent reinforcement learning model: setting reinforcement learning agents, setting the state, action and decision of reinforcement learning, and setting a reward and punishment function of reinforcement learning; a decision matrix is initialized, proper actions are selected based on an epsilon-greedy algorithm, reward and punishment feedback of the environment to the agents is obtained, the states of the agents are updated through the reward and punishment feedback, and whether all the agents obtain optimal control strategies or not is judged; inputting the preprocessed data into the</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115062871A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Intelligent electric meter state evaluation method based on multi-agent reinforcement learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FAN%20WEIXING&rft.date=2022-09-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115062871A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |