Linear ground feature repetition type classification method based on spatial relation coding

The invention discloses a linear ground feature repetition type classification method based on spatial relation coding, which comprises the following steps: identifying bus route repetition types, classifying the route repetition types, obtaining various spatial relation types through abstraction so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SUN HAO, QU HUA, PU XIUXIA, LI JUNHUI, DENG JIERONG, WANG HONGGANG, GUO JIANGUO, ZHANG YANGCUN, ZHENG DONGDONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SUN HAO
QU HUA
PU XIUXIA
LI JUNHUI
DENG JIERONG
WANG HONGGANG
GUO JIANGUO
ZHANG YANGCUN
ZHENG DONGDONG
description The invention discloses a linear ground feature repetition type classification method based on spatial relation coding, which comprises the following steps: identifying bus route repetition types, classifying the route repetition types, obtaining various spatial relation types through abstraction so as to determine the spatial relation of bus routes, and then combining with a corresponding feature extraction mode so as to determine the spatial relation of the bus routes. The method comprises the following steps: constructing a deep learning model, completing identification of different relation types by adopting a loss calculation method, constructing the deep learning model, designing to extract trajectory features through a bidirectional LSTM, and adding two full connection layers Lear1 and Lear2 to further process the trajectory features extracted by the BiLSTM so as to obtain more suitable vector representation. Through loss calculation, optimization of the weight and model training of the whole classific
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115062684A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115062684A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115062684A3</originalsourceid><addsrcrecordid>eNqNizsKAjEURaexEHUPzwUIjp_BVgbFQqwsheGZ3IyBmITkTeHuDeoCrC73cM64up2tByfqUxi8JgOWIYESIsSKDZ7kFUHKcc7WWMUf9oQ8gqY7Z2gqP8fC2ZXMfQUVtPX9tBoZdhmz306q-fFwbU8LxNChRAoe0rWXut4um1Wz2-zX_zhvBjw8aQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Linear ground feature repetition type classification method based on spatial relation coding</title><source>esp@cenet</source><creator>SUN HAO ; QU HUA ; PU XIUXIA ; LI JUNHUI ; DENG JIERONG ; WANG HONGGANG ; GUO JIANGUO ; ZHANG YANGCUN ; ZHENG DONGDONG</creator><creatorcontrib>SUN HAO ; QU HUA ; PU XIUXIA ; LI JUNHUI ; DENG JIERONG ; WANG HONGGANG ; GUO JIANGUO ; ZHANG YANGCUN ; ZHENG DONGDONG</creatorcontrib><description>The invention discloses a linear ground feature repetition type classification method based on spatial relation coding, which comprises the following steps: identifying bus route repetition types, classifying the route repetition types, obtaining various spatial relation types through abstraction so as to determine the spatial relation of bus routes, and then combining with a corresponding feature extraction mode so as to determine the spatial relation of the bus routes. The method comprises the following steps: constructing a deep learning model, completing identification of different relation types by adopting a loss calculation method, constructing the deep learning model, designing to extract trajectory features through a bidirectional LSTM, and adding two full connection layers Lear1 and Lear2 to further process the trajectory features extracted by the BiLSTM so as to obtain more suitable vector representation. Through loss calculation, optimization of the weight and model training of the whole classific</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220916&amp;DB=EPODOC&amp;CC=CN&amp;NR=115062684A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220916&amp;DB=EPODOC&amp;CC=CN&amp;NR=115062684A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN HAO</creatorcontrib><creatorcontrib>QU HUA</creatorcontrib><creatorcontrib>PU XIUXIA</creatorcontrib><creatorcontrib>LI JUNHUI</creatorcontrib><creatorcontrib>DENG JIERONG</creatorcontrib><creatorcontrib>WANG HONGGANG</creatorcontrib><creatorcontrib>GUO JIANGUO</creatorcontrib><creatorcontrib>ZHANG YANGCUN</creatorcontrib><creatorcontrib>ZHENG DONGDONG</creatorcontrib><title>Linear ground feature repetition type classification method based on spatial relation coding</title><description>The invention discloses a linear ground feature repetition type classification method based on spatial relation coding, which comprises the following steps: identifying bus route repetition types, classifying the route repetition types, obtaining various spatial relation types through abstraction so as to determine the spatial relation of bus routes, and then combining with a corresponding feature extraction mode so as to determine the spatial relation of the bus routes. The method comprises the following steps: constructing a deep learning model, completing identification of different relation types by adopting a loss calculation method, constructing the deep learning model, designing to extract trajectory features through a bidirectional LSTM, and adding two full connection layers Lear1 and Lear2 to further process the trajectory features extracted by the BiLSTM so as to obtain more suitable vector representation. Through loss calculation, optimization of the weight and model training of the whole classific</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsKAjEURaexEHUPzwUIjp_BVgbFQqwsheGZ3IyBmITkTeHuDeoCrC73cM64up2tByfqUxi8JgOWIYESIsSKDZ7kFUHKcc7WWMUf9oQ8gqY7Z2gqP8fC2ZXMfQUVtPX9tBoZdhmz306q-fFwbU8LxNChRAoe0rWXut4um1Wz2-zX_zhvBjw8aQ</recordid><startdate>20220916</startdate><enddate>20220916</enddate><creator>SUN HAO</creator><creator>QU HUA</creator><creator>PU XIUXIA</creator><creator>LI JUNHUI</creator><creator>DENG JIERONG</creator><creator>WANG HONGGANG</creator><creator>GUO JIANGUO</creator><creator>ZHANG YANGCUN</creator><creator>ZHENG DONGDONG</creator><scope>EVB</scope></search><sort><creationdate>20220916</creationdate><title>Linear ground feature repetition type classification method based on spatial relation coding</title><author>SUN HAO ; QU HUA ; PU XIUXIA ; LI JUNHUI ; DENG JIERONG ; WANG HONGGANG ; GUO JIANGUO ; ZHANG YANGCUN ; ZHENG DONGDONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115062684A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN HAO</creatorcontrib><creatorcontrib>QU HUA</creatorcontrib><creatorcontrib>PU XIUXIA</creatorcontrib><creatorcontrib>LI JUNHUI</creatorcontrib><creatorcontrib>DENG JIERONG</creatorcontrib><creatorcontrib>WANG HONGGANG</creatorcontrib><creatorcontrib>GUO JIANGUO</creatorcontrib><creatorcontrib>ZHANG YANGCUN</creatorcontrib><creatorcontrib>ZHENG DONGDONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN HAO</au><au>QU HUA</au><au>PU XIUXIA</au><au>LI JUNHUI</au><au>DENG JIERONG</au><au>WANG HONGGANG</au><au>GUO JIANGUO</au><au>ZHANG YANGCUN</au><au>ZHENG DONGDONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Linear ground feature repetition type classification method based on spatial relation coding</title><date>2022-09-16</date><risdate>2022</risdate><abstract>The invention discloses a linear ground feature repetition type classification method based on spatial relation coding, which comprises the following steps: identifying bus route repetition types, classifying the route repetition types, obtaining various spatial relation types through abstraction so as to determine the spatial relation of bus routes, and then combining with a corresponding feature extraction mode so as to determine the spatial relation of the bus routes. The method comprises the following steps: constructing a deep learning model, completing identification of different relation types by adopting a loss calculation method, constructing the deep learning model, designing to extract trajectory features through a bidirectional LSTM, and adding two full connection layers Lear1 and Lear2 to further process the trajectory features extracted by the BiLSTM so as to obtain more suitable vector representation. Through loss calculation, optimization of the weight and model training of the whole classific</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115062684A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Linear ground feature repetition type classification method based on spatial relation coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN%20HAO&rft.date=2022-09-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115062684A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true