Power data prediction model optimization method and system

The invention provides an electric power data prediction model optimization method and system, the electric power data prediction model optimization method is applied to object type data processing, and the method comprises the steps: collecting and obtaining electric power structured information, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WU SHAOLEI, DOU LIANGJUN, XU FEI, CHENG HUIDONG, ZHOU JIANJUN, ZHAO CHENG, WU KAI, YU AIBIN, LUO CHEN, FENG YU, ZHANG ZHENGKAI, QI ZHENBIAO, LI WEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WU SHAOLEI
DOU LIANGJUN
XU FEI
CHENG HUIDONG
ZHOU JIANJUN
ZHAO CHENG
WU KAI
YU AIBIN
LUO CHEN
FENG YU
ZHANG ZHENGKAI
QI ZHENBIAO
LI WEI
description The invention provides an electric power data prediction model optimization method and system, the electric power data prediction model optimization method is applied to object type data processing, and the method comprises the steps: collecting and obtaining electric power structured information, and generating electric power state sample data according to the electric power structured information; classifying and identifying the power state sample data to obtain sample label information, and obtaining training model parameters and prediction target data from a preset training model; processing the training model parameters and the prediction target data to obtain sample loss parameters; processing the sample label information according to a sample loss parameter so as to obtain adaptive sample mining data; and carrying out convergence processing on the preset training model by using the adaptive sample mining data. According to the method, the online difficult sample mining loss function is designed, the we
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115048989A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115048989A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115048989A3</originalsourceid><addsrcrecordid>eNrjZLAKyC9PLVJISSxJVCgoSk3JTC7JzM9TyM1PSc1RyC8oyczNrEqECKWWZOSnKCTmpSgUVxaXpObyMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQ1MDEwtLC0tHY2LUAACiay-E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power data prediction model optimization method and system</title><source>esp@cenet</source><creator>WU SHAOLEI ; DOU LIANGJUN ; XU FEI ; CHENG HUIDONG ; ZHOU JIANJUN ; ZHAO CHENG ; WU KAI ; YU AIBIN ; LUO CHEN ; FENG YU ; ZHANG ZHENGKAI ; QI ZHENBIAO ; LI WEI</creator><creatorcontrib>WU SHAOLEI ; DOU LIANGJUN ; XU FEI ; CHENG HUIDONG ; ZHOU JIANJUN ; ZHAO CHENG ; WU KAI ; YU AIBIN ; LUO CHEN ; FENG YU ; ZHANG ZHENGKAI ; QI ZHENBIAO ; LI WEI</creatorcontrib><description>The invention provides an electric power data prediction model optimization method and system, the electric power data prediction model optimization method is applied to object type data processing, and the method comprises the steps: collecting and obtaining electric power structured information, and generating electric power state sample data according to the electric power structured information; classifying and identifying the power state sample data to obtain sample label information, and obtaining training model parameters and prediction target data from a preset training model; processing the training model parameters and the prediction target data to obtain sample loss parameters; processing the sample label information according to a sample loss parameter so as to obtain adaptive sample mining data; and carrying out convergence processing on the preset training model by using the adaptive sample mining data. According to the method, the online difficult sample mining loss function is designed, the we</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220913&amp;DB=EPODOC&amp;CC=CN&amp;NR=115048989A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220913&amp;DB=EPODOC&amp;CC=CN&amp;NR=115048989A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU SHAOLEI</creatorcontrib><creatorcontrib>DOU LIANGJUN</creatorcontrib><creatorcontrib>XU FEI</creatorcontrib><creatorcontrib>CHENG HUIDONG</creatorcontrib><creatorcontrib>ZHOU JIANJUN</creatorcontrib><creatorcontrib>ZHAO CHENG</creatorcontrib><creatorcontrib>WU KAI</creatorcontrib><creatorcontrib>YU AIBIN</creatorcontrib><creatorcontrib>LUO CHEN</creatorcontrib><creatorcontrib>FENG YU</creatorcontrib><creatorcontrib>ZHANG ZHENGKAI</creatorcontrib><creatorcontrib>QI ZHENBIAO</creatorcontrib><creatorcontrib>LI WEI</creatorcontrib><title>Power data prediction model optimization method and system</title><description>The invention provides an electric power data prediction model optimization method and system, the electric power data prediction model optimization method is applied to object type data processing, and the method comprises the steps: collecting and obtaining electric power structured information, and generating electric power state sample data according to the electric power structured information; classifying and identifying the power state sample data to obtain sample label information, and obtaining training model parameters and prediction target data from a preset training model; processing the training model parameters and the prediction target data to obtain sample loss parameters; processing the sample label information according to a sample loss parameter so as to obtain adaptive sample mining data; and carrying out convergence processing on the preset training model by using the adaptive sample mining data. According to the method, the online difficult sample mining loss function is designed, the we</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAKyC9PLVJISSxJVCgoSk3JTC7JzM9TyM1PSc1RyC8oyczNrEqECKWWZOSnKCTmpSgUVxaXpObyMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQ1MDEwtLC0tHY2LUAACiay-E</recordid><startdate>20220913</startdate><enddate>20220913</enddate><creator>WU SHAOLEI</creator><creator>DOU LIANGJUN</creator><creator>XU FEI</creator><creator>CHENG HUIDONG</creator><creator>ZHOU JIANJUN</creator><creator>ZHAO CHENG</creator><creator>WU KAI</creator><creator>YU AIBIN</creator><creator>LUO CHEN</creator><creator>FENG YU</creator><creator>ZHANG ZHENGKAI</creator><creator>QI ZHENBIAO</creator><creator>LI WEI</creator><scope>EVB</scope></search><sort><creationdate>20220913</creationdate><title>Power data prediction model optimization method and system</title><author>WU SHAOLEI ; DOU LIANGJUN ; XU FEI ; CHENG HUIDONG ; ZHOU JIANJUN ; ZHAO CHENG ; WU KAI ; YU AIBIN ; LUO CHEN ; FENG YU ; ZHANG ZHENGKAI ; QI ZHENBIAO ; LI WEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115048989A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WU SHAOLEI</creatorcontrib><creatorcontrib>DOU LIANGJUN</creatorcontrib><creatorcontrib>XU FEI</creatorcontrib><creatorcontrib>CHENG HUIDONG</creatorcontrib><creatorcontrib>ZHOU JIANJUN</creatorcontrib><creatorcontrib>ZHAO CHENG</creatorcontrib><creatorcontrib>WU KAI</creatorcontrib><creatorcontrib>YU AIBIN</creatorcontrib><creatorcontrib>LUO CHEN</creatorcontrib><creatorcontrib>FENG YU</creatorcontrib><creatorcontrib>ZHANG ZHENGKAI</creatorcontrib><creatorcontrib>QI ZHENBIAO</creatorcontrib><creatorcontrib>LI WEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU SHAOLEI</au><au>DOU LIANGJUN</au><au>XU FEI</au><au>CHENG HUIDONG</au><au>ZHOU JIANJUN</au><au>ZHAO CHENG</au><au>WU KAI</au><au>YU AIBIN</au><au>LUO CHEN</au><au>FENG YU</au><au>ZHANG ZHENGKAI</au><au>QI ZHENBIAO</au><au>LI WEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power data prediction model optimization method and system</title><date>2022-09-13</date><risdate>2022</risdate><abstract>The invention provides an electric power data prediction model optimization method and system, the electric power data prediction model optimization method is applied to object type data processing, and the method comprises the steps: collecting and obtaining electric power structured information, and generating electric power state sample data according to the electric power structured information; classifying and identifying the power state sample data to obtain sample label information, and obtaining training model parameters and prediction target data from a preset training model; processing the training model parameters and the prediction target data to obtain sample loss parameters; processing the sample label information according to a sample loss parameter so as to obtain adaptive sample mining data; and carrying out convergence processing on the preset training model by using the adaptive sample mining data. According to the method, the online difficult sample mining loss function is designed, the we</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115048989A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Power data prediction model optimization method and system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20SHAOLEI&rft.date=2022-09-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115048989A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true