Realization method of lightweight super-dimensional calculation classification model
The invention discloses an implementation method of a lightweight super-dimensional calculation classification model, which comprises the following steps of: firstly, determining the data volume, the data value domain and the super-dimensional vector dimension of a sample to be learned, dividing an...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TENG ZIYU CHI YUNPENG WANG QIANLAN LIU WENBO YAO YIRONG SHAN YONGQI XU FANG |
description | The invention discloses an implementation method of a lightweight super-dimensional calculation classification model, which comprises the following steps of: firstly, determining the data volume, the data value domain and the super-dimensional vector dimension of a sample to be learned, dividing an address memory and a continuous item memory in a hardware memory, determining the number of numerical sampling, and obtaining an address super-dimensional vector; obtaining a numerical value super-dimensional vector through a NAND gate negation method; for an input sample, firstly, an address super-dimensional vector of the position where each data point is located and a numerical value super-dimensional vector corresponding to the numerical value of the data point are bound through multiplication, and then all the data points form a set through additive operation and are subjected to binarization processing; when the sample is a training sample, the sample is added to the category super-dimensional vector correspo |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114997312A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114997312A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114997312A3</originalsourceid><addsrcrecordid>eNrjZAgJSk3MyaxKLMnMz1PITS3JyE9RyE9TyMlMzygpTwWRCsWlBalFuimZual5xUBViTkKyYk5yaU5ED3JOYnFxZlpmclQI_JTUnN4GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoYmlpbmxoZGjMTFqACnvOfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Realization method of lightweight super-dimensional calculation classification model</title><source>esp@cenet</source><creator>TENG ZIYU ; CHI YUNPENG ; WANG QIANLAN ; LIU WENBO ; YAO YIRONG ; SHAN YONGQI ; XU FANG</creator><creatorcontrib>TENG ZIYU ; CHI YUNPENG ; WANG QIANLAN ; LIU WENBO ; YAO YIRONG ; SHAN YONGQI ; XU FANG</creatorcontrib><description>The invention discloses an implementation method of a lightweight super-dimensional calculation classification model, which comprises the following steps of: firstly, determining the data volume, the data value domain and the super-dimensional vector dimension of a sample to be learned, dividing an address memory and a continuous item memory in a hardware memory, determining the number of numerical sampling, and obtaining an address super-dimensional vector; obtaining a numerical value super-dimensional vector through a NAND gate negation method; for an input sample, firstly, an address super-dimensional vector of the position where each data point is located and a numerical value super-dimensional vector corresponding to the numerical value of the data point are bound through multiplication, and then all the data points form a set through additive operation and are subjected to binarization processing; when the sample is a training sample, the sample is added to the category super-dimensional vector correspo</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220902&DB=EPODOC&CC=CN&NR=114997312A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220902&DB=EPODOC&CC=CN&NR=114997312A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TENG ZIYU</creatorcontrib><creatorcontrib>CHI YUNPENG</creatorcontrib><creatorcontrib>WANG QIANLAN</creatorcontrib><creatorcontrib>LIU WENBO</creatorcontrib><creatorcontrib>YAO YIRONG</creatorcontrib><creatorcontrib>SHAN YONGQI</creatorcontrib><creatorcontrib>XU FANG</creatorcontrib><title>Realization method of lightweight super-dimensional calculation classification model</title><description>The invention discloses an implementation method of a lightweight super-dimensional calculation classification model, which comprises the following steps of: firstly, determining the data volume, the data value domain and the super-dimensional vector dimension of a sample to be learned, dividing an address memory and a continuous item memory in a hardware memory, determining the number of numerical sampling, and obtaining an address super-dimensional vector; obtaining a numerical value super-dimensional vector through a NAND gate negation method; for an input sample, firstly, an address super-dimensional vector of the position where each data point is located and a numerical value super-dimensional vector corresponding to the numerical value of the data point are bound through multiplication, and then all the data points form a set through additive operation and are subjected to binarization processing; when the sample is a training sample, the sample is added to the category super-dimensional vector correspo</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAgJSk3MyaxKLMnMz1PITS3JyE9RyE9TyMlMzygpTwWRCsWlBalFuimZual5xUBViTkKyYk5yaU5ED3JOYnFxZlpmclQI_JTUnN4GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoYmlpbmxoZGjMTFqACnvOfg</recordid><startdate>20220902</startdate><enddate>20220902</enddate><creator>TENG ZIYU</creator><creator>CHI YUNPENG</creator><creator>WANG QIANLAN</creator><creator>LIU WENBO</creator><creator>YAO YIRONG</creator><creator>SHAN YONGQI</creator><creator>XU FANG</creator><scope>EVB</scope></search><sort><creationdate>20220902</creationdate><title>Realization method of lightweight super-dimensional calculation classification model</title><author>TENG ZIYU ; CHI YUNPENG ; WANG QIANLAN ; LIU WENBO ; YAO YIRONG ; SHAN YONGQI ; XU FANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114997312A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>TENG ZIYU</creatorcontrib><creatorcontrib>CHI YUNPENG</creatorcontrib><creatorcontrib>WANG QIANLAN</creatorcontrib><creatorcontrib>LIU WENBO</creatorcontrib><creatorcontrib>YAO YIRONG</creatorcontrib><creatorcontrib>SHAN YONGQI</creatorcontrib><creatorcontrib>XU FANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TENG ZIYU</au><au>CHI YUNPENG</au><au>WANG QIANLAN</au><au>LIU WENBO</au><au>YAO YIRONG</au><au>SHAN YONGQI</au><au>XU FANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Realization method of lightweight super-dimensional calculation classification model</title><date>2022-09-02</date><risdate>2022</risdate><abstract>The invention discloses an implementation method of a lightweight super-dimensional calculation classification model, which comprises the following steps of: firstly, determining the data volume, the data value domain and the super-dimensional vector dimension of a sample to be learned, dividing an address memory and a continuous item memory in a hardware memory, determining the number of numerical sampling, and obtaining an address super-dimensional vector; obtaining a numerical value super-dimensional vector through a NAND gate negation method; for an input sample, firstly, an address super-dimensional vector of the position where each data point is located and a numerical value super-dimensional vector corresponding to the numerical value of the data point are bound through multiplication, and then all the data points form a set through additive operation and are subjected to binarization processing; when the sample is a training sample, the sample is added to the category super-dimensional vector correspo</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114997312A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Realization method of lightweight super-dimensional calculation classification model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TENG%20ZIYU&rft.date=2022-09-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114997312A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |