Optimal lunar surface circling and leap trajectory generation method
The invention relates to an optimal lunar surface circling and leap trajectory generation method, and belongs to the field of trajectory design of celestial body surface flight detectors. The method comprises the following steps: 1, dividing a leap track into three stages; 2, establishing a motion m...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GUAN YIFENG ZHANG HONGHUA CHEN SHANGSHANG WANG ZEGUO YU PING |
description | The invention relates to an optimal lunar surface circling and leap trajectory generation method, and belongs to the field of trajectory design of celestial body surface flight detectors. The method comprises the following steps: 1, dividing a leap track into three stages; 2, establishing a motion model in a two-dimensional plane of the leap track; 3, setting constraint conditions of the control quantity of each stage; 4, setting initial conditions and terminal conditions of each stage; 5, setting an optimal control quantity form of each stage according to the motion models, the control quantity constraint conditions, the initial conditions and the terminal conditions obtained in the steps 2-4; 6, according to the motion models obtained in the steps 2-5, the control quantity constraint condition, the initial condition, the terminal condition and the optimal control quantity form, a corresponding optimal track is obtained through one-dimensional search in each stage; and step 7, combining the optimal trajector |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114995126A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114995126A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114995126A3</originalsourceid><addsrcrecordid>eNrjZHDxLyjJzE3MUcgpzUssUiguLUpLTE5VSM4sSs7JzEtXSMxLUchJTSxQKClKzEpNLskvqlRIT81LLUosyczPU8hNLcnIT-FhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBUAT81JL4p39DA1NLC1NDY3MHI2JUQMA2UozLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Optimal lunar surface circling and leap trajectory generation method</title><source>esp@cenet</source><creator>GUAN YIFENG ; ZHANG HONGHUA ; CHEN SHANGSHANG ; WANG ZEGUO ; YU PING</creator><creatorcontrib>GUAN YIFENG ; ZHANG HONGHUA ; CHEN SHANGSHANG ; WANG ZEGUO ; YU PING</creatorcontrib><description>The invention relates to an optimal lunar surface circling and leap trajectory generation method, and belongs to the field of trajectory design of celestial body surface flight detectors. The method comprises the following steps: 1, dividing a leap track into three stages; 2, establishing a motion model in a two-dimensional plane of the leap track; 3, setting constraint conditions of the control quantity of each stage; 4, setting initial conditions and terminal conditions of each stage; 5, setting an optimal control quantity form of each stage according to the motion models, the control quantity constraint conditions, the initial conditions and the terminal conditions obtained in the steps 2-4; 6, according to the motion models obtained in the steps 2-5, the control quantity constraint condition, the initial condition, the terminal condition and the optimal control quantity form, a corresponding optimal track is obtained through one-dimensional search in each stage; and step 7, combining the optimal trajector</description><language>chi ; eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220902&DB=EPODOC&CC=CN&NR=114995126A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220902&DB=EPODOC&CC=CN&NR=114995126A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUAN YIFENG</creatorcontrib><creatorcontrib>ZHANG HONGHUA</creatorcontrib><creatorcontrib>CHEN SHANGSHANG</creatorcontrib><creatorcontrib>WANG ZEGUO</creatorcontrib><creatorcontrib>YU PING</creatorcontrib><title>Optimal lunar surface circling and leap trajectory generation method</title><description>The invention relates to an optimal lunar surface circling and leap trajectory generation method, and belongs to the field of trajectory design of celestial body surface flight detectors. The method comprises the following steps: 1, dividing a leap track into three stages; 2, establishing a motion model in a two-dimensional plane of the leap track; 3, setting constraint conditions of the control quantity of each stage; 4, setting initial conditions and terminal conditions of each stage; 5, setting an optimal control quantity form of each stage according to the motion models, the control quantity constraint conditions, the initial conditions and the terminal conditions obtained in the steps 2-4; 6, according to the motion models obtained in the steps 2-5, the control quantity constraint condition, the initial condition, the terminal condition and the optimal control quantity form, a corresponding optimal track is obtained through one-dimensional search in each stage; and step 7, combining the optimal trajector</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDxLyjJzE3MUcgpzUssUiguLUpLTE5VSM4sSs7JzEtXSMxLUchJTSxQKClKzEpNLskvqlRIT81LLUosyczPU8hNLcnIT-FhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBUAT81JL4p39DA1NLC1NDY3MHI2JUQMA2UozLA</recordid><startdate>20220902</startdate><enddate>20220902</enddate><creator>GUAN YIFENG</creator><creator>ZHANG HONGHUA</creator><creator>CHEN SHANGSHANG</creator><creator>WANG ZEGUO</creator><creator>YU PING</creator><scope>EVB</scope></search><sort><creationdate>20220902</creationdate><title>Optimal lunar surface circling and leap trajectory generation method</title><author>GUAN YIFENG ; ZHANG HONGHUA ; CHEN SHANGSHANG ; WANG ZEGUO ; YU PING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114995126A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>GUAN YIFENG</creatorcontrib><creatorcontrib>ZHANG HONGHUA</creatorcontrib><creatorcontrib>CHEN SHANGSHANG</creatorcontrib><creatorcontrib>WANG ZEGUO</creatorcontrib><creatorcontrib>YU PING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUAN YIFENG</au><au>ZHANG HONGHUA</au><au>CHEN SHANGSHANG</au><au>WANG ZEGUO</au><au>YU PING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Optimal lunar surface circling and leap trajectory generation method</title><date>2022-09-02</date><risdate>2022</risdate><abstract>The invention relates to an optimal lunar surface circling and leap trajectory generation method, and belongs to the field of trajectory design of celestial body surface flight detectors. The method comprises the following steps: 1, dividing a leap track into three stages; 2, establishing a motion model in a two-dimensional plane of the leap track; 3, setting constraint conditions of the control quantity of each stage; 4, setting initial conditions and terminal conditions of each stage; 5, setting an optimal control quantity form of each stage according to the motion models, the control quantity constraint conditions, the initial conditions and the terminal conditions obtained in the steps 2-4; 6, according to the motion models obtained in the steps 2-5, the control quantity constraint condition, the initial condition, the terminal condition and the optimal control quantity form, a corresponding optimal track is obtained through one-dimensional search in each stage; and step 7, combining the optimal trajector</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114995126A |
source | esp@cenet |
subjects | CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING |
title | Optimal lunar surface circling and leap trajectory generation method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUAN%20YIFENG&rft.date=2022-09-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114995126A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |