Optimal lunar surface circling and leap trajectory generation method

The invention relates to an optimal lunar surface circling and leap trajectory generation method, and belongs to the field of trajectory design of celestial body surface flight detectors. The method comprises the following steps: 1, dividing a leap track into three stages; 2, establishing a motion m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUAN YIFENG, ZHANG HONGHUA, CHEN SHANGSHANG, WANG ZEGUO, YU PING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUAN YIFENG
ZHANG HONGHUA
CHEN SHANGSHANG
WANG ZEGUO
YU PING
description The invention relates to an optimal lunar surface circling and leap trajectory generation method, and belongs to the field of trajectory design of celestial body surface flight detectors. The method comprises the following steps: 1, dividing a leap track into three stages; 2, establishing a motion model in a two-dimensional plane of the leap track; 3, setting constraint conditions of the control quantity of each stage; 4, setting initial conditions and terminal conditions of each stage; 5, setting an optimal control quantity form of each stage according to the motion models, the control quantity constraint conditions, the initial conditions and the terminal conditions obtained in the steps 2-4; 6, according to the motion models obtained in the steps 2-5, the control quantity constraint condition, the initial condition, the terminal condition and the optimal control quantity form, a corresponding optimal track is obtained through one-dimensional search in each stage; and step 7, combining the optimal trajector
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114995126A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114995126A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114995126A3</originalsourceid><addsrcrecordid>eNrjZHDxLyjJzE3MUcgpzUssUiguLUpLTE5VSM4sSs7JzEtXSMxLUchJTSxQKClKzEpNLskvqlRIT81LLUosyczPU8hNLcnIT-FhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBUAT81JL4p39DA1NLC1NDY3MHI2JUQMA2UozLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Optimal lunar surface circling and leap trajectory generation method</title><source>esp@cenet</source><creator>GUAN YIFENG ; ZHANG HONGHUA ; CHEN SHANGSHANG ; WANG ZEGUO ; YU PING</creator><creatorcontrib>GUAN YIFENG ; ZHANG HONGHUA ; CHEN SHANGSHANG ; WANG ZEGUO ; YU PING</creatorcontrib><description>The invention relates to an optimal lunar surface circling and leap trajectory generation method, and belongs to the field of trajectory design of celestial body surface flight detectors. The method comprises the following steps: 1, dividing a leap track into three stages; 2, establishing a motion model in a two-dimensional plane of the leap track; 3, setting constraint conditions of the control quantity of each stage; 4, setting initial conditions and terminal conditions of each stage; 5, setting an optimal control quantity form of each stage according to the motion models, the control quantity constraint conditions, the initial conditions and the terminal conditions obtained in the steps 2-4; 6, according to the motion models obtained in the steps 2-5, the control quantity constraint condition, the initial condition, the terminal condition and the optimal control quantity form, a corresponding optimal track is obtained through one-dimensional search in each stage; and step 7, combining the optimal trajector</description><language>chi ; eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220902&amp;DB=EPODOC&amp;CC=CN&amp;NR=114995126A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220902&amp;DB=EPODOC&amp;CC=CN&amp;NR=114995126A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUAN YIFENG</creatorcontrib><creatorcontrib>ZHANG HONGHUA</creatorcontrib><creatorcontrib>CHEN SHANGSHANG</creatorcontrib><creatorcontrib>WANG ZEGUO</creatorcontrib><creatorcontrib>YU PING</creatorcontrib><title>Optimal lunar surface circling and leap trajectory generation method</title><description>The invention relates to an optimal lunar surface circling and leap trajectory generation method, and belongs to the field of trajectory design of celestial body surface flight detectors. The method comprises the following steps: 1, dividing a leap track into three stages; 2, establishing a motion model in a two-dimensional plane of the leap track; 3, setting constraint conditions of the control quantity of each stage; 4, setting initial conditions and terminal conditions of each stage; 5, setting an optimal control quantity form of each stage according to the motion models, the control quantity constraint conditions, the initial conditions and the terminal conditions obtained in the steps 2-4; 6, according to the motion models obtained in the steps 2-5, the control quantity constraint condition, the initial condition, the terminal condition and the optimal control quantity form, a corresponding optimal track is obtained through one-dimensional search in each stage; and step 7, combining the optimal trajector</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDxLyjJzE3MUcgpzUssUiguLUpLTE5VSM4sSs7JzEtXSMxLUchJTSxQKClKzEpNLskvqlRIT81LLUosyczPU8hNLcnIT-FhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBUAT81JL4p39DA1NLC1NDY3MHI2JUQMA2UozLA</recordid><startdate>20220902</startdate><enddate>20220902</enddate><creator>GUAN YIFENG</creator><creator>ZHANG HONGHUA</creator><creator>CHEN SHANGSHANG</creator><creator>WANG ZEGUO</creator><creator>YU PING</creator><scope>EVB</scope></search><sort><creationdate>20220902</creationdate><title>Optimal lunar surface circling and leap trajectory generation method</title><author>GUAN YIFENG ; ZHANG HONGHUA ; CHEN SHANGSHANG ; WANG ZEGUO ; YU PING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114995126A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>GUAN YIFENG</creatorcontrib><creatorcontrib>ZHANG HONGHUA</creatorcontrib><creatorcontrib>CHEN SHANGSHANG</creatorcontrib><creatorcontrib>WANG ZEGUO</creatorcontrib><creatorcontrib>YU PING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUAN YIFENG</au><au>ZHANG HONGHUA</au><au>CHEN SHANGSHANG</au><au>WANG ZEGUO</au><au>YU PING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Optimal lunar surface circling and leap trajectory generation method</title><date>2022-09-02</date><risdate>2022</risdate><abstract>The invention relates to an optimal lunar surface circling and leap trajectory generation method, and belongs to the field of trajectory design of celestial body surface flight detectors. The method comprises the following steps: 1, dividing a leap track into three stages; 2, establishing a motion model in a two-dimensional plane of the leap track; 3, setting constraint conditions of the control quantity of each stage; 4, setting initial conditions and terminal conditions of each stage; 5, setting an optimal control quantity form of each stage according to the motion models, the control quantity constraint conditions, the initial conditions and the terminal conditions obtained in the steps 2-4; 6, according to the motion models obtained in the steps 2-5, the control quantity constraint condition, the initial condition, the terminal condition and the optimal control quantity form, a corresponding optimal track is obtained through one-dimensional search in each stage; and step 7, combining the optimal trajector</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114995126A
source esp@cenet
subjects CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
title Optimal lunar surface circling and leap trajectory generation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUAN%20YIFENG&rft.date=2022-09-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114995126A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true