Three-array feature fusion crowd density estimation algorithm based on residual network

In order to solve the technical problem of multi-scale caused by the view angle of a camera in a crowd density estimation task, the invention provides a three-array feature fusion crowd density estimation algorithm based on a residual network, an improved ResNet34 network is used for extracting pict...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WU LANG, SUN HONGJIAN, HOU ALIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WU LANG
SUN HONGJIAN
HOU ALIN
description In order to solve the technical problem of multi-scale caused by the view angle of a camera in a crowd density estimation task, the invention provides a three-array feature fusion crowd density estimation algorithm based on a residual network, an improved ResNet34 network is used for extracting picture feature information, output is processed by using three columns of cavity convolution with different voidage rates, and the crowd density estimation efficiency is improved. The principle of the hole convolution is to perform interval zero supplementation operation on a convolution kernel on the basis of common convolution, so that a receptive field can be expanded under the condition of not increasing network parameters, and the capability of capturing image multi-scale information by the network is improved. And finally, the outputs of the three arrays are cascaded to obtain a high-quality density prediction map. According to the method, the influence of the density, the shielding property and the multi-scale
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114972936A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114972936A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114972936A3</originalsourceid><addsrcrecordid>eNqNisEKgkAURd20iOofXh_gwozCZUjRqpXQUl7OVYdGR94bEf8-gz6g1YFzzjp6Fq0AMYvwTDU4jAKqR7W-p0r8ZMigVxtmggbbcfgGdo0XG9qOXqwwtCiBWjOyox5h8vLeRquanWL34yba365Ffo8x-BI6cIXlLPNHkhyz8yFLT5f0n-cDuVw6uA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Three-array feature fusion crowd density estimation algorithm based on residual network</title><source>esp@cenet</source><creator>WU LANG ; SUN HONGJIAN ; HOU ALIN</creator><creatorcontrib>WU LANG ; SUN HONGJIAN ; HOU ALIN</creatorcontrib><description>In order to solve the technical problem of multi-scale caused by the view angle of a camera in a crowd density estimation task, the invention provides a three-array feature fusion crowd density estimation algorithm based on a residual network, an improved ResNet34 network is used for extracting picture feature information, output is processed by using three columns of cavity convolution with different voidage rates, and the crowd density estimation efficiency is improved. The principle of the hole convolution is to perform interval zero supplementation operation on a convolution kernel on the basis of common convolution, so that a receptive field can be expanded under the condition of not increasing network parameters, and the capability of capturing image multi-scale information by the network is improved. And finally, the outputs of the three arrays are cascaded to obtain a high-quality density prediction map. According to the method, the influence of the density, the shielding property and the multi-scale</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220830&amp;DB=EPODOC&amp;CC=CN&amp;NR=114972936A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220830&amp;DB=EPODOC&amp;CC=CN&amp;NR=114972936A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU LANG</creatorcontrib><creatorcontrib>SUN HONGJIAN</creatorcontrib><creatorcontrib>HOU ALIN</creatorcontrib><title>Three-array feature fusion crowd density estimation algorithm based on residual network</title><description>In order to solve the technical problem of multi-scale caused by the view angle of a camera in a crowd density estimation task, the invention provides a three-array feature fusion crowd density estimation algorithm based on a residual network, an improved ResNet34 network is used for extracting picture feature information, output is processed by using three columns of cavity convolution with different voidage rates, and the crowd density estimation efficiency is improved. The principle of the hole convolution is to perform interval zero supplementation operation on a convolution kernel on the basis of common convolution, so that a receptive field can be expanded under the condition of not increasing network parameters, and the capability of capturing image multi-scale information by the network is improved. And finally, the outputs of the three arrays are cascaded to obtain a high-quality density prediction map. According to the method, the influence of the density, the shielding property and the multi-scale</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNisEKgkAURd20iOofXh_gwozCZUjRqpXQUl7OVYdGR94bEf8-gz6g1YFzzjp6Fq0AMYvwTDU4jAKqR7W-p0r8ZMigVxtmggbbcfgGdo0XG9qOXqwwtCiBWjOyox5h8vLeRquanWL34yba365Ffo8x-BI6cIXlLPNHkhyz8yFLT5f0n-cDuVw6uA</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>WU LANG</creator><creator>SUN HONGJIAN</creator><creator>HOU ALIN</creator><scope>EVB</scope></search><sort><creationdate>20220830</creationdate><title>Three-array feature fusion crowd density estimation algorithm based on residual network</title><author>WU LANG ; SUN HONGJIAN ; HOU ALIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114972936A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WU LANG</creatorcontrib><creatorcontrib>SUN HONGJIAN</creatorcontrib><creatorcontrib>HOU ALIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU LANG</au><au>SUN HONGJIAN</au><au>HOU ALIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Three-array feature fusion crowd density estimation algorithm based on residual network</title><date>2022-08-30</date><risdate>2022</risdate><abstract>In order to solve the technical problem of multi-scale caused by the view angle of a camera in a crowd density estimation task, the invention provides a three-array feature fusion crowd density estimation algorithm based on a residual network, an improved ResNet34 network is used for extracting picture feature information, output is processed by using three columns of cavity convolution with different voidage rates, and the crowd density estimation efficiency is improved. The principle of the hole convolution is to perform interval zero supplementation operation on a convolution kernel on the basis of common convolution, so that a receptive field can be expanded under the condition of not increasing network parameters, and the capability of capturing image multi-scale information by the network is improved. And finally, the outputs of the three arrays are cascaded to obtain a high-quality density prediction map. According to the method, the influence of the density, the shielding property and the multi-scale</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114972936A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Three-array feature fusion crowd density estimation algorithm based on residual network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20LANG&rft.date=2022-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114972936A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true