Internet-of-things operation index prediction method based on improved SVR model
The invention discloses an internet-of-things operation index prediction method based on an improved SVR model. The method comprises the following steps: preprocessing climate data and internet-of-things operation index data; feature selection is carried out on the preprocessed climate data, and red...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LU HAO HU JURONG CAO NING LI MOYAN |
description | The invention discloses an internet-of-things operation index prediction method based on an improved SVR model. The method comprises the following steps: preprocessing climate data and internet-of-things operation index data; feature selection is carried out on the preprocessed climate data, and redundant features are removed; an RF-SVR model is established, parameters of the RF-SVR model are optimized by using an intelligent optimization algorithm PSO, and an RF-PSO-SVR model is obtained; and outputting an internet of things operation index prediction result through the RF-PSO-SVR model. According to the method, the reliability of feature selection is improved, the prediction precision of a subsequent prediction model is improved, and the SVR model after feature selection is optimized by using the PSO algorithm aiming at the situation that accurate prediction of local Internet of Things operation index data cannot be realized only by using the SVR, so that the goodness of fit of the model is improved, the me |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114970719A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114970719A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114970719A3</originalsourceid><addsrcrecordid>eNrjZAjwzCtJLcpLLdHNT9MtycjMSy9WyC9ILUosyczPU8jMS0mtUCgoSk3JTAYL5KaWZOSnKCQlFqemKIAU5BYU5ZcB2cFhQQq5-SmpOTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FWhbvLOfoaGJpbmBuaGlozExagCpnTdT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Internet-of-things operation index prediction method based on improved SVR model</title><source>esp@cenet</source><creator>LU HAO ; HU JURONG ; CAO NING ; LI MOYAN</creator><creatorcontrib>LU HAO ; HU JURONG ; CAO NING ; LI MOYAN</creatorcontrib><description>The invention discloses an internet-of-things operation index prediction method based on an improved SVR model. The method comprises the following steps: preprocessing climate data and internet-of-things operation index data; feature selection is carried out on the preprocessed climate data, and redundant features are removed; an RF-SVR model is established, parameters of the RF-SVR model are optimized by using an intelligent optimization algorithm PSO, and an RF-PSO-SVR model is obtained; and outputting an internet of things operation index prediction result through the RF-PSO-SVR model. According to the method, the reliability of feature selection is improved, the prediction precision of a subsequent prediction model is improved, and the SVR model after feature selection is optimized by using the PSO algorithm aiming at the situation that accurate prediction of local Internet of Things operation index data cannot be realized only by using the SVR, so that the goodness of fit of the model is improved, the me</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220830&DB=EPODOC&CC=CN&NR=114970719A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220830&DB=EPODOC&CC=CN&NR=114970719A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU HAO</creatorcontrib><creatorcontrib>HU JURONG</creatorcontrib><creatorcontrib>CAO NING</creatorcontrib><creatorcontrib>LI MOYAN</creatorcontrib><title>Internet-of-things operation index prediction method based on improved SVR model</title><description>The invention discloses an internet-of-things operation index prediction method based on an improved SVR model. The method comprises the following steps: preprocessing climate data and internet-of-things operation index data; feature selection is carried out on the preprocessed climate data, and redundant features are removed; an RF-SVR model is established, parameters of the RF-SVR model are optimized by using an intelligent optimization algorithm PSO, and an RF-PSO-SVR model is obtained; and outputting an internet of things operation index prediction result through the RF-PSO-SVR model. According to the method, the reliability of feature selection is improved, the prediction precision of a subsequent prediction model is improved, and the SVR model after feature selection is optimized by using the PSO algorithm aiming at the situation that accurate prediction of local Internet of Things operation index data cannot be realized only by using the SVR, so that the goodness of fit of the model is improved, the me</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjwzCtJLcpLLdHNT9MtycjMSy9WyC9ILUosyczPU8jMS0mtUCgoSk3JTAYL5KaWZOSnKCQlFqemKIAU5BYU5ZcB2cFhQQq5-SmpOTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FWhbvLOfoaGJpbmBuaGlozExagCpnTdT</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>LU HAO</creator><creator>HU JURONG</creator><creator>CAO NING</creator><creator>LI MOYAN</creator><scope>EVB</scope></search><sort><creationdate>20220830</creationdate><title>Internet-of-things operation index prediction method based on improved SVR model</title><author>LU HAO ; HU JURONG ; CAO NING ; LI MOYAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114970719A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LU HAO</creatorcontrib><creatorcontrib>HU JURONG</creatorcontrib><creatorcontrib>CAO NING</creatorcontrib><creatorcontrib>LI MOYAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU HAO</au><au>HU JURONG</au><au>CAO NING</au><au>LI MOYAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Internet-of-things operation index prediction method based on improved SVR model</title><date>2022-08-30</date><risdate>2022</risdate><abstract>The invention discloses an internet-of-things operation index prediction method based on an improved SVR model. The method comprises the following steps: preprocessing climate data and internet-of-things operation index data; feature selection is carried out on the preprocessed climate data, and redundant features are removed; an RF-SVR model is established, parameters of the RF-SVR model are optimized by using an intelligent optimization algorithm PSO, and an RF-PSO-SVR model is obtained; and outputting an internet of things operation index prediction result through the RF-PSO-SVR model. According to the method, the reliability of feature selection is improved, the prediction precision of a subsequent prediction model is improved, and the SVR model after feature selection is optimized by using the PSO algorithm aiming at the situation that accurate prediction of local Internet of Things operation index data cannot be realized only by using the SVR, so that the goodness of fit of the model is improved, the me</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114970719A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Internet-of-things operation index prediction method based on improved SVR model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20HAO&rft.date=2022-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114970719A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |