Internet-of-things operation index prediction method based on improved SVR model

The invention discloses an internet-of-things operation index prediction method based on an improved SVR model. The method comprises the following steps: preprocessing climate data and internet-of-things operation index data; feature selection is carried out on the preprocessed climate data, and red...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LU HAO, HU JURONG, CAO NING, LI MOYAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LU HAO
HU JURONG
CAO NING
LI MOYAN
description The invention discloses an internet-of-things operation index prediction method based on an improved SVR model. The method comprises the following steps: preprocessing climate data and internet-of-things operation index data; feature selection is carried out on the preprocessed climate data, and redundant features are removed; an RF-SVR model is established, parameters of the RF-SVR model are optimized by using an intelligent optimization algorithm PSO, and an RF-PSO-SVR model is obtained; and outputting an internet of things operation index prediction result through the RF-PSO-SVR model. According to the method, the reliability of feature selection is improved, the prediction precision of a subsequent prediction model is improved, and the SVR model after feature selection is optimized by using the PSO algorithm aiming at the situation that accurate prediction of local Internet of Things operation index data cannot be realized only by using the SVR, so that the goodness of fit of the model is improved, the me
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114970719A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114970719A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114970719A3</originalsourceid><addsrcrecordid>eNrjZAjwzCtJLcpLLdHNT9MtycjMSy9WyC9ILUosyczPU8jMS0mtUCgoSk3JTAYL5KaWZOSnKCQlFqemKIAU5BYU5ZcB2cFhQQq5-SmpOTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FWhbvLOfoaGJpbmBuaGlozExagCpnTdT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Internet-of-things operation index prediction method based on improved SVR model</title><source>esp@cenet</source><creator>LU HAO ; HU JURONG ; CAO NING ; LI MOYAN</creator><creatorcontrib>LU HAO ; HU JURONG ; CAO NING ; LI MOYAN</creatorcontrib><description>The invention discloses an internet-of-things operation index prediction method based on an improved SVR model. The method comprises the following steps: preprocessing climate data and internet-of-things operation index data; feature selection is carried out on the preprocessed climate data, and redundant features are removed; an RF-SVR model is established, parameters of the RF-SVR model are optimized by using an intelligent optimization algorithm PSO, and an RF-PSO-SVR model is obtained; and outputting an internet of things operation index prediction result through the RF-PSO-SVR model. According to the method, the reliability of feature selection is improved, the prediction precision of a subsequent prediction model is improved, and the SVR model after feature selection is optimized by using the PSO algorithm aiming at the situation that accurate prediction of local Internet of Things operation index data cannot be realized only by using the SVR, so that the goodness of fit of the model is improved, the me</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220830&amp;DB=EPODOC&amp;CC=CN&amp;NR=114970719A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220830&amp;DB=EPODOC&amp;CC=CN&amp;NR=114970719A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU HAO</creatorcontrib><creatorcontrib>HU JURONG</creatorcontrib><creatorcontrib>CAO NING</creatorcontrib><creatorcontrib>LI MOYAN</creatorcontrib><title>Internet-of-things operation index prediction method based on improved SVR model</title><description>The invention discloses an internet-of-things operation index prediction method based on an improved SVR model. The method comprises the following steps: preprocessing climate data and internet-of-things operation index data; feature selection is carried out on the preprocessed climate data, and redundant features are removed; an RF-SVR model is established, parameters of the RF-SVR model are optimized by using an intelligent optimization algorithm PSO, and an RF-PSO-SVR model is obtained; and outputting an internet of things operation index prediction result through the RF-PSO-SVR model. According to the method, the reliability of feature selection is improved, the prediction precision of a subsequent prediction model is improved, and the SVR model after feature selection is optimized by using the PSO algorithm aiming at the situation that accurate prediction of local Internet of Things operation index data cannot be realized only by using the SVR, so that the goodness of fit of the model is improved, the me</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjwzCtJLcpLLdHNT9MtycjMSy9WyC9ILUosyczPU8jMS0mtUCgoSk3JTAYL5KaWZOSnKCQlFqemKIAU5BYU5ZcB2cFhQQq5-SmpOTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FWhbvLOfoaGJpbmBuaGlozExagCpnTdT</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>LU HAO</creator><creator>HU JURONG</creator><creator>CAO NING</creator><creator>LI MOYAN</creator><scope>EVB</scope></search><sort><creationdate>20220830</creationdate><title>Internet-of-things operation index prediction method based on improved SVR model</title><author>LU HAO ; HU JURONG ; CAO NING ; LI MOYAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114970719A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LU HAO</creatorcontrib><creatorcontrib>HU JURONG</creatorcontrib><creatorcontrib>CAO NING</creatorcontrib><creatorcontrib>LI MOYAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU HAO</au><au>HU JURONG</au><au>CAO NING</au><au>LI MOYAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Internet-of-things operation index prediction method based on improved SVR model</title><date>2022-08-30</date><risdate>2022</risdate><abstract>The invention discloses an internet-of-things operation index prediction method based on an improved SVR model. The method comprises the following steps: preprocessing climate data and internet-of-things operation index data; feature selection is carried out on the preprocessed climate data, and redundant features are removed; an RF-SVR model is established, parameters of the RF-SVR model are optimized by using an intelligent optimization algorithm PSO, and an RF-PSO-SVR model is obtained; and outputting an internet of things operation index prediction result through the RF-PSO-SVR model. According to the method, the reliability of feature selection is improved, the prediction precision of a subsequent prediction model is improved, and the SVR model after feature selection is optimized by using the PSO algorithm aiming at the situation that accurate prediction of local Internet of Things operation index data cannot be realized only by using the SVR, so that the goodness of fit of the model is improved, the me</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114970719A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Internet-of-things operation index prediction method based on improved SVR model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20HAO&rft.date=2022-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114970719A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true