Metering equipment operation performance prediction method based on improved LWPLS

The invention discloses a metering equipment operation performance prediction method based on improved LWPLS, and the method comprises the steps: obtaining and preprocessing a historical operation index data set and a historical climate data set, and dividing the historical operation index data set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LU HAO, HU JURONG, CAO NING, LEE MYUNG-GIL
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LU HAO
HU JURONG
CAO NING
LEE MYUNG-GIL
description The invention discloses a metering equipment operation performance prediction method based on improved LWPLS, and the method comprises the steps: obtaining and preprocessing a historical operation index data set and a historical climate data set, and dividing the historical operation index data set and the historical climate data set into a training set and a test set; clustering the training set by adopting K-means to obtain sub-training sets, and calculating the centroid of each sub-training set; improving a local weighted partial least squares modeling algorithm, and modeling each sub-training set by adopting the improved LWPLS to obtain a sub-model; the climate variables in the test set are substituted into the sub-models, the prediction results of all the sub-models are weighted, the collection failure rate prediction values corresponding to the test sample data points are calculated in an integrated mode, and the operation performance prediction result of the metering equipment is obtained. According to
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114970698A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114970698A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114970698A3</originalsourceid><addsrcrecordid>eNrjZAjyTS1JLcrMS1dILSzNLMhNzStRyC9ILUosyczPUwAy0vKLchPzklMVCopSUzKTwcK5qSUZ-SkKSYnFqSkKQH5mbkFRfhmQ7RMe4BPMw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk1PzUkvinf0MDU0szQ3MLC0cjYlRAwBgIjhv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Metering equipment operation performance prediction method based on improved LWPLS</title><source>esp@cenet</source><creator>LU HAO ; HU JURONG ; CAO NING ; LEE MYUNG-GIL</creator><creatorcontrib>LU HAO ; HU JURONG ; CAO NING ; LEE MYUNG-GIL</creatorcontrib><description>The invention discloses a metering equipment operation performance prediction method based on improved LWPLS, and the method comprises the steps: obtaining and preprocessing a historical operation index data set and a historical climate data set, and dividing the historical operation index data set and the historical climate data set into a training set and a test set; clustering the training set by adopting K-means to obtain sub-training sets, and calculating the centroid of each sub-training set; improving a local weighted partial least squares modeling algorithm, and modeling each sub-training set by adopting the improved LWPLS to obtain a sub-model; the climate variables in the test set are substituted into the sub-models, the prediction results of all the sub-models are weighted, the collection failure rate prediction values corresponding to the test sample data points are calculated in an integrated mode, and the operation performance prediction result of the metering equipment is obtained. According to</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; MEASURING ; METEOROLOGY ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220830&amp;DB=EPODOC&amp;CC=CN&amp;NR=114970698A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220830&amp;DB=EPODOC&amp;CC=CN&amp;NR=114970698A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU HAO</creatorcontrib><creatorcontrib>HU JURONG</creatorcontrib><creatorcontrib>CAO NING</creatorcontrib><creatorcontrib>LEE MYUNG-GIL</creatorcontrib><title>Metering equipment operation performance prediction method based on improved LWPLS</title><description>The invention discloses a metering equipment operation performance prediction method based on improved LWPLS, and the method comprises the steps: obtaining and preprocessing a historical operation index data set and a historical climate data set, and dividing the historical operation index data set and the historical climate data set into a training set and a test set; clustering the training set by adopting K-means to obtain sub-training sets, and calculating the centroid of each sub-training set; improving a local weighted partial least squares modeling algorithm, and modeling each sub-training set by adopting the improved LWPLS to obtain a sub-model; the climate variables in the test set are substituted into the sub-models, the prediction results of all the sub-models are weighted, the collection failure rate prediction values corresponding to the test sample data points are calculated in an integrated mode, and the operation performance prediction result of the metering equipment is obtained. According to</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>MEASURING</subject><subject>METEOROLOGY</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjyTS1JLcrMS1dILSzNLMhNzStRyC9ILUosyczPUwAy0vKLchPzklMVCopSUzKTwcK5qSUZ-SkKSYnFqSkKQH5mbkFRfhmQ7RMe4BPMw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk1PzUkvinf0MDU0szQ3MLC0cjYlRAwBgIjhv</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>LU HAO</creator><creator>HU JURONG</creator><creator>CAO NING</creator><creator>LEE MYUNG-GIL</creator><scope>EVB</scope></search><sort><creationdate>20220830</creationdate><title>Metering equipment operation performance prediction method based on improved LWPLS</title><author>LU HAO ; HU JURONG ; CAO NING ; LEE MYUNG-GIL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114970698A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>MEASURING</topic><topic>METEOROLOGY</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LU HAO</creatorcontrib><creatorcontrib>HU JURONG</creatorcontrib><creatorcontrib>CAO NING</creatorcontrib><creatorcontrib>LEE MYUNG-GIL</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU HAO</au><au>HU JURONG</au><au>CAO NING</au><au>LEE MYUNG-GIL</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Metering equipment operation performance prediction method based on improved LWPLS</title><date>2022-08-30</date><risdate>2022</risdate><abstract>The invention discloses a metering equipment operation performance prediction method based on improved LWPLS, and the method comprises the steps: obtaining and preprocessing a historical operation index data set and a historical climate data set, and dividing the historical operation index data set and the historical climate data set into a training set and a test set; clustering the training set by adopting K-means to obtain sub-training sets, and calculating the centroid of each sub-training set; improving a local weighted partial least squares modeling algorithm, and modeling each sub-training set by adopting the improved LWPLS to obtain a sub-model; the climate variables in the test set are substituted into the sub-models, the prediction results of all the sub-models are weighted, the collection failure rate prediction values corresponding to the test sample data points are calculated in an integrated mode, and the operation performance prediction result of the metering equipment is obtained. According to</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114970698A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
MEASURING
METEOROLOGY
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
TESTING
title Metering equipment operation performance prediction method based on improved LWPLS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20HAO&rft.date=2022-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114970698A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true