Metering equipment operation performance prediction method based on improved LWPLS
The invention discloses a metering equipment operation performance prediction method based on improved LWPLS, and the method comprises the steps: obtaining and preprocessing a historical operation index data set and a historical climate data set, and dividing the historical operation index data set...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LU HAO HU JURONG CAO NING LEE MYUNG-GIL |
description | The invention discloses a metering equipment operation performance prediction method based on improved LWPLS, and the method comprises the steps: obtaining and preprocessing a historical operation index data set and a historical climate data set, and dividing the historical operation index data set and the historical climate data set into a training set and a test set; clustering the training set by adopting K-means to obtain sub-training sets, and calculating the centroid of each sub-training set; improving a local weighted partial least squares modeling algorithm, and modeling each sub-training set by adopting the improved LWPLS to obtain a sub-model; the climate variables in the test set are substituted into the sub-models, the prediction results of all the sub-models are weighted, the collection failure rate prediction values corresponding to the test sample data points are calculated in an integrated mode, and the operation performance prediction result of the metering equipment is obtained. According to |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114970698A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114970698A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114970698A3</originalsourceid><addsrcrecordid>eNrjZAjyTS1JLcrMS1dILSzNLMhNzStRyC9ILUosyczPUwAy0vKLchPzklMVCopSUzKTwcK5qSUZ-SkKSYnFqSkKQH5mbkFRfhmQ7RMe4BPMw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk1PzUkvinf0MDU0szQ3MLC0cjYlRAwBgIjhv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Metering equipment operation performance prediction method based on improved LWPLS</title><source>esp@cenet</source><creator>LU HAO ; HU JURONG ; CAO NING ; LEE MYUNG-GIL</creator><creatorcontrib>LU HAO ; HU JURONG ; CAO NING ; LEE MYUNG-GIL</creatorcontrib><description>The invention discloses a metering equipment operation performance prediction method based on improved LWPLS, and the method comprises the steps: obtaining and preprocessing a historical operation index data set and a historical climate data set, and dividing the historical operation index data set and the historical climate data set into a training set and a test set; clustering the training set by adopting K-means to obtain sub-training sets, and calculating the centroid of each sub-training set; improving a local weighted partial least squares modeling algorithm, and modeling each sub-training set by adopting the improved LWPLS to obtain a sub-model; the climate variables in the test set are substituted into the sub-models, the prediction results of all the sub-models are weighted, the collection failure rate prediction values corresponding to the test sample data points are calculated in an integrated mode, and the operation performance prediction result of the metering equipment is obtained. According to</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; MEASURING ; METEOROLOGY ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220830&DB=EPODOC&CC=CN&NR=114970698A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220830&DB=EPODOC&CC=CN&NR=114970698A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU HAO</creatorcontrib><creatorcontrib>HU JURONG</creatorcontrib><creatorcontrib>CAO NING</creatorcontrib><creatorcontrib>LEE MYUNG-GIL</creatorcontrib><title>Metering equipment operation performance prediction method based on improved LWPLS</title><description>The invention discloses a metering equipment operation performance prediction method based on improved LWPLS, and the method comprises the steps: obtaining and preprocessing a historical operation index data set and a historical climate data set, and dividing the historical operation index data set and the historical climate data set into a training set and a test set; clustering the training set by adopting K-means to obtain sub-training sets, and calculating the centroid of each sub-training set; improving a local weighted partial least squares modeling algorithm, and modeling each sub-training set by adopting the improved LWPLS to obtain a sub-model; the climate variables in the test set are substituted into the sub-models, the prediction results of all the sub-models are weighted, the collection failure rate prediction values corresponding to the test sample data points are calculated in an integrated mode, and the operation performance prediction result of the metering equipment is obtained. According to</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>MEASURING</subject><subject>METEOROLOGY</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjyTS1JLcrMS1dILSzNLMhNzStRyC9ILUosyczPUwAy0vKLchPzklMVCopSUzKTwcK5qSUZ-SkKSYnFqSkKQH5mbkFRfhmQ7RMe4BPMw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk1PzUkvinf0MDU0szQ3MLC0cjYlRAwBgIjhv</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>LU HAO</creator><creator>HU JURONG</creator><creator>CAO NING</creator><creator>LEE MYUNG-GIL</creator><scope>EVB</scope></search><sort><creationdate>20220830</creationdate><title>Metering equipment operation performance prediction method based on improved LWPLS</title><author>LU HAO ; HU JURONG ; CAO NING ; LEE MYUNG-GIL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114970698A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>MEASURING</topic><topic>METEOROLOGY</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LU HAO</creatorcontrib><creatorcontrib>HU JURONG</creatorcontrib><creatorcontrib>CAO NING</creatorcontrib><creatorcontrib>LEE MYUNG-GIL</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU HAO</au><au>HU JURONG</au><au>CAO NING</au><au>LEE MYUNG-GIL</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Metering equipment operation performance prediction method based on improved LWPLS</title><date>2022-08-30</date><risdate>2022</risdate><abstract>The invention discloses a metering equipment operation performance prediction method based on improved LWPLS, and the method comprises the steps: obtaining and preprocessing a historical operation index data set and a historical climate data set, and dividing the historical operation index data set and the historical climate data set into a training set and a test set; clustering the training set by adopting K-means to obtain sub-training sets, and calculating the centroid of each sub-training set; improving a local weighted partial least squares modeling algorithm, and modeling each sub-training set by adopting the improved LWPLS to obtain a sub-model; the climate variables in the test set are substituted into the sub-models, the prediction results of all the sub-models are weighted, the collection failure rate prediction values corresponding to the test sample data points are calculated in an integrated mode, and the operation performance prediction result of the metering equipment is obtained. According to</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114970698A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING HANDLING RECORD CARRIERS MEASURING METEOROLOGY PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS TESTING |
title | Metering equipment operation performance prediction method based on improved LWPLS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20HAO&rft.date=2022-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114970698A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |