Machine learning-based low earth orbit satellite orbit forecast precision improvement model establishment method
The invention relates to a method for establishing a low-orbit satellite orbit forecast precision improvement model based on machine learning. Comprising the following steps: generating orbit truth value data XTrue under a full dynamic model, and orbit estimation data XEst and orbit prediction data...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MA PENGBIN LIU BIN ZHANG DAPENG FAN HENGHAI LIU SHUO HUYAN ZONGPO ZHAI MIN |
description | The invention relates to a method for establishing a low-orbit satellite orbit forecast precision improvement model based on machine learning. Comprising the following steps: generating orbit truth value data XTrue under a full dynamic model, and orbit estimation data XEst and orbit prediction data XPre under a preset dynamic model by adopting precise numerical value extrapolation software; obtaining a track truth value error according to the XTrue and the XPre, and obtaining a track relative forecast error according to the XEst and the XPre; based on an XGBoost model, determining a preset input characteristic variable by taking the track true value error as a target variable, and performing normalization processing; analyzing the normalized preset input characteristic variable and the target variable by using an XGBoost model, and selecting a preset input characteristic variable combination with the maximum determination coefficient R2 as a key input characteristic variable; performing hyper-parameter optimi |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114970341A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114970341A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114970341A3</originalsourceid><addsrcrecordid>eNqNijEKwkAQRdNYiHqH8QABQwJiKUGx0co-TJIfd2Gzs2QGvb4BcwCrx3u8dZbu3DkfQQE8RR9fecuKnoJ8aC7mSKbWGykbQvCGxQeZ0LEapZlevUTyY5rkjRHRaJQegaDGbfDqfg3mpN9mq4GDYrdwk-2vl2d9y5GkgSbuEGFN_SiK6nQ8lFVxLv95vsY2RE8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning-based low earth orbit satellite orbit forecast precision improvement model establishment method</title><source>esp@cenet</source><creator>MA PENGBIN ; LIU BIN ; ZHANG DAPENG ; FAN HENGHAI ; LIU SHUO ; HUYAN ZONGPO ; ZHAI MIN</creator><creatorcontrib>MA PENGBIN ; LIU BIN ; ZHANG DAPENG ; FAN HENGHAI ; LIU SHUO ; HUYAN ZONGPO ; ZHAI MIN</creatorcontrib><description>The invention relates to a method for establishing a low-orbit satellite orbit forecast precision improvement model based on machine learning. Comprising the following steps: generating orbit truth value data XTrue under a full dynamic model, and orbit estimation data XEst and orbit prediction data XPre under a preset dynamic model by adopting precise numerical value extrapolation software; obtaining a track truth value error according to the XTrue and the XPre, and obtaining a track relative forecast error according to the XEst and the XPre; based on an XGBoost model, determining a preset input characteristic variable by taking the track true value error as a target variable, and performing normalization processing; analyzing the normalized preset input characteristic variable and the target variable by using an XGBoost model, and selecting a preset input characteristic variable combination with the maximum determination coefficient R2 as a key input characteristic variable; performing hyper-parameter optimi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220830&DB=EPODOC&CC=CN&NR=114970341A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220830&DB=EPODOC&CC=CN&NR=114970341A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA PENGBIN</creatorcontrib><creatorcontrib>LIU BIN</creatorcontrib><creatorcontrib>ZHANG DAPENG</creatorcontrib><creatorcontrib>FAN HENGHAI</creatorcontrib><creatorcontrib>LIU SHUO</creatorcontrib><creatorcontrib>HUYAN ZONGPO</creatorcontrib><creatorcontrib>ZHAI MIN</creatorcontrib><title>Machine learning-based low earth orbit satellite orbit forecast precision improvement model establishment method</title><description>The invention relates to a method for establishing a low-orbit satellite orbit forecast precision improvement model based on machine learning. Comprising the following steps: generating orbit truth value data XTrue under a full dynamic model, and orbit estimation data XEst and orbit prediction data XPre under a preset dynamic model by adopting precise numerical value extrapolation software; obtaining a track truth value error according to the XTrue and the XPre, and obtaining a track relative forecast error according to the XEst and the XPre; based on an XGBoost model, determining a preset input characteristic variable by taking the track true value error as a target variable, and performing normalization processing; analyzing the normalized preset input characteristic variable and the target variable by using an XGBoost model, and selecting a preset input characteristic variable combination with the maximum determination coefficient R2 as a key input characteristic variable; performing hyper-parameter optimi</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQRdNYiHqH8QABQwJiKUGx0co-TJIfd2Gzs2QGvb4BcwCrx3u8dZbu3DkfQQE8RR9fecuKnoJ8aC7mSKbWGykbQvCGxQeZ0LEapZlevUTyY5rkjRHRaJQegaDGbfDqfg3mpN9mq4GDYrdwk-2vl2d9y5GkgSbuEGFN_SiK6nQ8lFVxLv95vsY2RE8</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>MA PENGBIN</creator><creator>LIU BIN</creator><creator>ZHANG DAPENG</creator><creator>FAN HENGHAI</creator><creator>LIU SHUO</creator><creator>HUYAN ZONGPO</creator><creator>ZHAI MIN</creator><scope>EVB</scope></search><sort><creationdate>20220830</creationdate><title>Machine learning-based low earth orbit satellite orbit forecast precision improvement model establishment method</title><author>MA PENGBIN ; LIU BIN ; ZHANG DAPENG ; FAN HENGHAI ; LIU SHUO ; HUYAN ZONGPO ; ZHAI MIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114970341A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>MA PENGBIN</creatorcontrib><creatorcontrib>LIU BIN</creatorcontrib><creatorcontrib>ZHANG DAPENG</creatorcontrib><creatorcontrib>FAN HENGHAI</creatorcontrib><creatorcontrib>LIU SHUO</creatorcontrib><creatorcontrib>HUYAN ZONGPO</creatorcontrib><creatorcontrib>ZHAI MIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA PENGBIN</au><au>LIU BIN</au><au>ZHANG DAPENG</au><au>FAN HENGHAI</au><au>LIU SHUO</au><au>HUYAN ZONGPO</au><au>ZHAI MIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning-based low earth orbit satellite orbit forecast precision improvement model establishment method</title><date>2022-08-30</date><risdate>2022</risdate><abstract>The invention relates to a method for establishing a low-orbit satellite orbit forecast precision improvement model based on machine learning. Comprising the following steps: generating orbit truth value data XTrue under a full dynamic model, and orbit estimation data XEst and orbit prediction data XPre under a preset dynamic model by adopting precise numerical value extrapolation software; obtaining a track truth value error according to the XTrue and the XPre, and obtaining a track relative forecast error according to the XEst and the XPre; based on an XGBoost model, determining a preset input characteristic variable by taking the track true value error as a target variable, and performing normalization processing; analyzing the normalized preset input characteristic variable and the target variable by using an XGBoost model, and selecting a preset input characteristic variable combination with the maximum determination coefficient R2 as a key input characteristic variable; performing hyper-parameter optimi</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114970341A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Machine learning-based low earth orbit satellite orbit forecast precision improvement model establishment method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20PENGBIN&rft.date=2022-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114970341A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |