Machine learning-based low earth orbit satellite orbit forecast precision improvement model establishment method

The invention relates to a method for establishing a low-orbit satellite orbit forecast precision improvement model based on machine learning. Comprising the following steps: generating orbit truth value data XTrue under a full dynamic model, and orbit estimation data XEst and orbit prediction data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MA PENGBIN, LIU BIN, ZHANG DAPENG, FAN HENGHAI, LIU SHUO, HUYAN ZONGPO, ZHAI MIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MA PENGBIN
LIU BIN
ZHANG DAPENG
FAN HENGHAI
LIU SHUO
HUYAN ZONGPO
ZHAI MIN
description The invention relates to a method for establishing a low-orbit satellite orbit forecast precision improvement model based on machine learning. Comprising the following steps: generating orbit truth value data XTrue under a full dynamic model, and orbit estimation data XEst and orbit prediction data XPre under a preset dynamic model by adopting precise numerical value extrapolation software; obtaining a track truth value error according to the XTrue and the XPre, and obtaining a track relative forecast error according to the XEst and the XPre; based on an XGBoost model, determining a preset input characteristic variable by taking the track true value error as a target variable, and performing normalization processing; analyzing the normalized preset input characteristic variable and the target variable by using an XGBoost model, and selecting a preset input characteristic variable combination with the maximum determination coefficient R2 as a key input characteristic variable; performing hyper-parameter optimi
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114970341A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114970341A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114970341A3</originalsourceid><addsrcrecordid>eNqNijEKwkAQRdNYiHqH8QABQwJiKUGx0co-TJIfd2Gzs2QGvb4BcwCrx3u8dZbu3DkfQQE8RR9fecuKnoJ8aC7mSKbWGykbQvCGxQeZ0LEapZlevUTyY5rkjRHRaJQegaDGbfDqfg3mpN9mq4GDYrdwk-2vl2d9y5GkgSbuEGFN_SiK6nQ8lFVxLv95vsY2RE8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning-based low earth orbit satellite orbit forecast precision improvement model establishment method</title><source>esp@cenet</source><creator>MA PENGBIN ; LIU BIN ; ZHANG DAPENG ; FAN HENGHAI ; LIU SHUO ; HUYAN ZONGPO ; ZHAI MIN</creator><creatorcontrib>MA PENGBIN ; LIU BIN ; ZHANG DAPENG ; FAN HENGHAI ; LIU SHUO ; HUYAN ZONGPO ; ZHAI MIN</creatorcontrib><description>The invention relates to a method for establishing a low-orbit satellite orbit forecast precision improvement model based on machine learning. Comprising the following steps: generating orbit truth value data XTrue under a full dynamic model, and orbit estimation data XEst and orbit prediction data XPre under a preset dynamic model by adopting precise numerical value extrapolation software; obtaining a track truth value error according to the XTrue and the XPre, and obtaining a track relative forecast error according to the XEst and the XPre; based on an XGBoost model, determining a preset input characteristic variable by taking the track true value error as a target variable, and performing normalization processing; analyzing the normalized preset input characteristic variable and the target variable by using an XGBoost model, and selecting a preset input characteristic variable combination with the maximum determination coefficient R2 as a key input characteristic variable; performing hyper-parameter optimi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220830&amp;DB=EPODOC&amp;CC=CN&amp;NR=114970341A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220830&amp;DB=EPODOC&amp;CC=CN&amp;NR=114970341A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA PENGBIN</creatorcontrib><creatorcontrib>LIU BIN</creatorcontrib><creatorcontrib>ZHANG DAPENG</creatorcontrib><creatorcontrib>FAN HENGHAI</creatorcontrib><creatorcontrib>LIU SHUO</creatorcontrib><creatorcontrib>HUYAN ZONGPO</creatorcontrib><creatorcontrib>ZHAI MIN</creatorcontrib><title>Machine learning-based low earth orbit satellite orbit forecast precision improvement model establishment method</title><description>The invention relates to a method for establishing a low-orbit satellite orbit forecast precision improvement model based on machine learning. Comprising the following steps: generating orbit truth value data XTrue under a full dynamic model, and orbit estimation data XEst and orbit prediction data XPre under a preset dynamic model by adopting precise numerical value extrapolation software; obtaining a track truth value error according to the XTrue and the XPre, and obtaining a track relative forecast error according to the XEst and the XPre; based on an XGBoost model, determining a preset input characteristic variable by taking the track true value error as a target variable, and performing normalization processing; analyzing the normalized preset input characteristic variable and the target variable by using an XGBoost model, and selecting a preset input characteristic variable combination with the maximum determination coefficient R2 as a key input characteristic variable; performing hyper-parameter optimi</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQRdNYiHqH8QABQwJiKUGx0co-TJIfd2Gzs2QGvb4BcwCrx3u8dZbu3DkfQQE8RR9fecuKnoJ8aC7mSKbWGykbQvCGxQeZ0LEapZlevUTyY5rkjRHRaJQegaDGbfDqfg3mpN9mq4GDYrdwk-2vl2d9y5GkgSbuEGFN_SiK6nQ8lFVxLv95vsY2RE8</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>MA PENGBIN</creator><creator>LIU BIN</creator><creator>ZHANG DAPENG</creator><creator>FAN HENGHAI</creator><creator>LIU SHUO</creator><creator>HUYAN ZONGPO</creator><creator>ZHAI MIN</creator><scope>EVB</scope></search><sort><creationdate>20220830</creationdate><title>Machine learning-based low earth orbit satellite orbit forecast precision improvement model establishment method</title><author>MA PENGBIN ; LIU BIN ; ZHANG DAPENG ; FAN HENGHAI ; LIU SHUO ; HUYAN ZONGPO ; ZHAI MIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114970341A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>MA PENGBIN</creatorcontrib><creatorcontrib>LIU BIN</creatorcontrib><creatorcontrib>ZHANG DAPENG</creatorcontrib><creatorcontrib>FAN HENGHAI</creatorcontrib><creatorcontrib>LIU SHUO</creatorcontrib><creatorcontrib>HUYAN ZONGPO</creatorcontrib><creatorcontrib>ZHAI MIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA PENGBIN</au><au>LIU BIN</au><au>ZHANG DAPENG</au><au>FAN HENGHAI</au><au>LIU SHUO</au><au>HUYAN ZONGPO</au><au>ZHAI MIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning-based low earth orbit satellite orbit forecast precision improvement model establishment method</title><date>2022-08-30</date><risdate>2022</risdate><abstract>The invention relates to a method for establishing a low-orbit satellite orbit forecast precision improvement model based on machine learning. Comprising the following steps: generating orbit truth value data XTrue under a full dynamic model, and orbit estimation data XEst and orbit prediction data XPre under a preset dynamic model by adopting precise numerical value extrapolation software; obtaining a track truth value error according to the XTrue and the XPre, and obtaining a track relative forecast error according to the XEst and the XPre; based on an XGBoost model, determining a preset input characteristic variable by taking the track true value error as a target variable, and performing normalization processing; analyzing the normalized preset input characteristic variable and the target variable by using an XGBoost model, and selecting a preset input characteristic variable combination with the maximum determination coefficient R2 as a key input characteristic variable; performing hyper-parameter optimi</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114970341A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Machine learning-based low earth orbit satellite orbit forecast precision improvement model establishment method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20PENGBIN&rft.date=2022-08-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114970341A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true