Pipeline miter joint angle detection method and device

The invention provides a pipeline miter angle detection method and device, and the method comprises the steps: collecting magnetic flux leakage curve samples of different miter angles in a pipeline through a magnetic flux leakage inner detector, and dividing the magnetic flux leakage curve samples i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUO ZHENGHONG, LI RUI, CHEN PENGCHAO, YAN BINGCHUAN, ZHENG JIANFENG, JIA GUANGMING, WU CHANGFANG, ZHANG FENG, CAI YONGJUN, FU KUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUO ZHENGHONG
LI RUI
CHEN PENGCHAO
YAN BINGCHUAN
ZHENG JIANFENG
JIA GUANGMING
WU CHANGFANG
ZHANG FENG
CAI YONGJUN
FU KUAN
description The invention provides a pipeline miter angle detection method and device, and the method comprises the steps: collecting magnetic flux leakage curve samples of different miter angles in a pipeline through a magnetic flux leakage inner detector, and dividing the magnetic flux leakage curve samples into a training image sample set and a test image sample set; inputting the training image sample set into a convolutional neural network to carry out feature recognition learning training so as to construct an initial convolutional neural network model; calibrating the initial convolutional neural network model by using the test image sample set to obtain a final convolutional neural network model; and acquiring a magnetic flux leakage curve image of the miter joint angle of the to-be-detected pipeline and inputting the image into the final convolutional neural network model to obtain the range of the miter joint angle of the to-be-detected pipeline. According to the method, the image recognition advantage of the g
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114926692A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114926692A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114926692A3</originalsourceid><addsrcrecordid>eNrjZDALyCxIzcnMS1XIzSxJLVLIys_MK1FIzEvPSVVISS1JTS7JzM9TyE0tychPAQqnAAXLMpNTeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGJpZGZmaWRozExagCQiS1y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Pipeline miter joint angle detection method and device</title><source>esp@cenet</source><creator>GUO ZHENGHONG ; LI RUI ; CHEN PENGCHAO ; YAN BINGCHUAN ; ZHENG JIANFENG ; JIA GUANGMING ; WU CHANGFANG ; ZHANG FENG ; CAI YONGJUN ; FU KUAN</creator><creatorcontrib>GUO ZHENGHONG ; LI RUI ; CHEN PENGCHAO ; YAN BINGCHUAN ; ZHENG JIANFENG ; JIA GUANGMING ; WU CHANGFANG ; ZHANG FENG ; CAI YONGJUN ; FU KUAN</creatorcontrib><description>The invention provides a pipeline miter angle detection method and device, and the method comprises the steps: collecting magnetic flux leakage curve samples of different miter angles in a pipeline through a magnetic flux leakage inner detector, and dividing the magnetic flux leakage curve samples into a training image sample set and a test image sample set; inputting the training image sample set into a convolutional neural network to carry out feature recognition learning training so as to construct an initial convolutional neural network model; calibrating the initial convolutional neural network model by using the test image sample set to obtain a final convolutional neural network model; and acquiring a magnetic flux leakage curve image of the miter joint angle of the to-be-detected pipeline and inputting the image into the final convolutional neural network model to obtain the range of the miter joint angle of the to-be-detected pipeline. According to the method, the image recognition advantage of the g</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220819&amp;DB=EPODOC&amp;CC=CN&amp;NR=114926692A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220819&amp;DB=EPODOC&amp;CC=CN&amp;NR=114926692A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUO ZHENGHONG</creatorcontrib><creatorcontrib>LI RUI</creatorcontrib><creatorcontrib>CHEN PENGCHAO</creatorcontrib><creatorcontrib>YAN BINGCHUAN</creatorcontrib><creatorcontrib>ZHENG JIANFENG</creatorcontrib><creatorcontrib>JIA GUANGMING</creatorcontrib><creatorcontrib>WU CHANGFANG</creatorcontrib><creatorcontrib>ZHANG FENG</creatorcontrib><creatorcontrib>CAI YONGJUN</creatorcontrib><creatorcontrib>FU KUAN</creatorcontrib><title>Pipeline miter joint angle detection method and device</title><description>The invention provides a pipeline miter angle detection method and device, and the method comprises the steps: collecting magnetic flux leakage curve samples of different miter angles in a pipeline through a magnetic flux leakage inner detector, and dividing the magnetic flux leakage curve samples into a training image sample set and a test image sample set; inputting the training image sample set into a convolutional neural network to carry out feature recognition learning training so as to construct an initial convolutional neural network model; calibrating the initial convolutional neural network model by using the test image sample set to obtain a final convolutional neural network model; and acquiring a magnetic flux leakage curve image of the miter joint angle of the to-be-detected pipeline and inputting the image into the final convolutional neural network model to obtain the range of the miter joint angle of the to-be-detected pipeline. According to the method, the image recognition advantage of the g</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDALyCxIzcnMS1XIzSxJLVLIys_MK1FIzEvPSVVISS1JTS7JzM9TyE0tychPAQqnAAXLMpNTeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGJpZGZmaWRozExagCQiS1y</recordid><startdate>20220819</startdate><enddate>20220819</enddate><creator>GUO ZHENGHONG</creator><creator>LI RUI</creator><creator>CHEN PENGCHAO</creator><creator>YAN BINGCHUAN</creator><creator>ZHENG JIANFENG</creator><creator>JIA GUANGMING</creator><creator>WU CHANGFANG</creator><creator>ZHANG FENG</creator><creator>CAI YONGJUN</creator><creator>FU KUAN</creator><scope>EVB</scope></search><sort><creationdate>20220819</creationdate><title>Pipeline miter joint angle detection method and device</title><author>GUO ZHENGHONG ; LI RUI ; CHEN PENGCHAO ; YAN BINGCHUAN ; ZHENG JIANFENG ; JIA GUANGMING ; WU CHANGFANG ; ZHANG FENG ; CAI YONGJUN ; FU KUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114926692A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>GUO ZHENGHONG</creatorcontrib><creatorcontrib>LI RUI</creatorcontrib><creatorcontrib>CHEN PENGCHAO</creatorcontrib><creatorcontrib>YAN BINGCHUAN</creatorcontrib><creatorcontrib>ZHENG JIANFENG</creatorcontrib><creatorcontrib>JIA GUANGMING</creatorcontrib><creatorcontrib>WU CHANGFANG</creatorcontrib><creatorcontrib>ZHANG FENG</creatorcontrib><creatorcontrib>CAI YONGJUN</creatorcontrib><creatorcontrib>FU KUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUO ZHENGHONG</au><au>LI RUI</au><au>CHEN PENGCHAO</au><au>YAN BINGCHUAN</au><au>ZHENG JIANFENG</au><au>JIA GUANGMING</au><au>WU CHANGFANG</au><au>ZHANG FENG</au><au>CAI YONGJUN</au><au>FU KUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Pipeline miter joint angle detection method and device</title><date>2022-08-19</date><risdate>2022</risdate><abstract>The invention provides a pipeline miter angle detection method and device, and the method comprises the steps: collecting magnetic flux leakage curve samples of different miter angles in a pipeline through a magnetic flux leakage inner detector, and dividing the magnetic flux leakage curve samples into a training image sample set and a test image sample set; inputting the training image sample set into a convolutional neural network to carry out feature recognition learning training so as to construct an initial convolutional neural network model; calibrating the initial convolutional neural network model by using the test image sample set to obtain a final convolutional neural network model; and acquiring a magnetic flux leakage curve image of the miter joint angle of the to-be-detected pipeline and inputting the image into the final convolutional neural network model to obtain the range of the miter joint angle of the to-be-detected pipeline. According to the method, the image recognition advantage of the g</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114926692A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
PHYSICS
TESTING
title Pipeline miter joint angle detection method and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUO%20ZHENGHONG&rft.date=2022-08-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114926692A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true