Automobile 360-degree look-around image rain removal method based on Transform network

The invention relates to an automobile 360-degree look-around image rain removal method, which comprises the following steps of: constructing a data set, and collecting 360-degree look-around images with information correlation and similar scenes as a network training data set; building a network mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TATSUHIKO, LI FEI, HU GUANGDI, LEE HYOUL
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TATSUHIKO
LI FEI
HU GUANGDI
LEE HYOUL
description The invention relates to an automobile 360-degree look-around image rain removal method, which comprises the following steps of: constructing a data set, and collecting 360-degree look-around images with information correlation and similar scenes as a network training data set; building a network model, wherein the network model comprises a convolutional neural network and a Transform network; extracting features of the network training data set input image through a convolutional neural network to obtain a feature map; paying attention to the feature elements in the feature map through a Transform network, and associating the feature elements with the most relevant feature elements; extracting features through a discriminator according to feature elements output by the Transform network, and multiplying the corresponding elements to generate an attention map, namely a rain-free image generated by the Transform network; training: inputting a rain-free image generated by the Transform network and a real rain-f
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114913389A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114913389A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114913389A3</originalsourceid><addsrcrecordid>eNqNyj0OgkAQBlAaC6PeYTwAiWSNkZIQjZUVsSWD-_ETdnfILOj1tfAAVq956-RRLLN4aQYHMqdDatEpQE5kTFllCZYGzx1IeQik8PJiRx5zL5YajrAkgSrlEFtRTwHzW3TcJquWXcTu5ybZXy9VeUsxSY048RPfWZf3LDvmmTHnvDD_nA-0gjj_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automobile 360-degree look-around image rain removal method based on Transform network</title><source>esp@cenet</source><creator>TATSUHIKO ; LI FEI ; HU GUANGDI ; LEE HYOUL</creator><creatorcontrib>TATSUHIKO ; LI FEI ; HU GUANGDI ; LEE HYOUL</creatorcontrib><description>The invention relates to an automobile 360-degree look-around image rain removal method, which comprises the following steps of: constructing a data set, and collecting 360-degree look-around images with information correlation and similar scenes as a network training data set; building a network model, wherein the network model comprises a convolutional neural network and a Transform network; extracting features of the network training data set input image through a convolutional neural network to obtain a feature map; paying attention to the feature elements in the feature map through a Transform network, and associating the feature elements with the most relevant feature elements; extracting features through a discriminator according to feature elements output by the Transform network, and multiplying the corresponding elements to generate an attention map, namely a rain-free image generated by the Transform network; training: inputting a rain-free image generated by the Transform network and a real rain-f</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220816&amp;DB=EPODOC&amp;CC=CN&amp;NR=114913389A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220816&amp;DB=EPODOC&amp;CC=CN&amp;NR=114913389A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TATSUHIKO</creatorcontrib><creatorcontrib>LI FEI</creatorcontrib><creatorcontrib>HU GUANGDI</creatorcontrib><creatorcontrib>LEE HYOUL</creatorcontrib><title>Automobile 360-degree look-around image rain removal method based on Transform network</title><description>The invention relates to an automobile 360-degree look-around image rain removal method, which comprises the following steps of: constructing a data set, and collecting 360-degree look-around images with information correlation and similar scenes as a network training data set; building a network model, wherein the network model comprises a convolutional neural network and a Transform network; extracting features of the network training data set input image through a convolutional neural network to obtain a feature map; paying attention to the feature elements in the feature map through a Transform network, and associating the feature elements with the most relevant feature elements; extracting features through a discriminator according to feature elements output by the Transform network, and multiplying the corresponding elements to generate an attention map, namely a rain-free image generated by the Transform network; training: inputting a rain-free image generated by the Transform network and a real rain-f</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0OgkAQBlAaC6PeYTwAiWSNkZIQjZUVsSWD-_ETdnfILOj1tfAAVq956-RRLLN4aQYHMqdDatEpQE5kTFllCZYGzx1IeQik8PJiRx5zL5YajrAkgSrlEFtRTwHzW3TcJquWXcTu5ybZXy9VeUsxSY048RPfWZf3LDvmmTHnvDD_nA-0gjj_</recordid><startdate>20220816</startdate><enddate>20220816</enddate><creator>TATSUHIKO</creator><creator>LI FEI</creator><creator>HU GUANGDI</creator><creator>LEE HYOUL</creator><scope>EVB</scope></search><sort><creationdate>20220816</creationdate><title>Automobile 360-degree look-around image rain removal method based on Transform network</title><author>TATSUHIKO ; LI FEI ; HU GUANGDI ; LEE HYOUL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114913389A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>TATSUHIKO</creatorcontrib><creatorcontrib>LI FEI</creatorcontrib><creatorcontrib>HU GUANGDI</creatorcontrib><creatorcontrib>LEE HYOUL</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TATSUHIKO</au><au>LI FEI</au><au>HU GUANGDI</au><au>LEE HYOUL</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automobile 360-degree look-around image rain removal method based on Transform network</title><date>2022-08-16</date><risdate>2022</risdate><abstract>The invention relates to an automobile 360-degree look-around image rain removal method, which comprises the following steps of: constructing a data set, and collecting 360-degree look-around images with information correlation and similar scenes as a network training data set; building a network model, wherein the network model comprises a convolutional neural network and a Transform network; extracting features of the network training data set input image through a convolutional neural network to obtain a feature map; paying attention to the feature elements in the feature map through a Transform network, and associating the feature elements with the most relevant feature elements; extracting features through a discriminator according to feature elements output by the Transform network, and multiplying the corresponding elements to generate an attention map, namely a rain-free image generated by the Transform network; training: inputting a rain-free image generated by the Transform network and a real rain-f</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114913389A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Automobile 360-degree look-around image rain removal method based on Transform network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TATSUHIKO&rft.date=2022-08-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114913389A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true