Hepatocellular carcinoma CK19 and MVI prediction method based on multi-task learning

The invention discloses a hepatocellular carcinoma CK19 and MVI prediction method based on multi-task learning, and the method comprises the steps: controlling a first feature extraction module, a second feature extraction module and a third feature extraction module to determine a first feature map...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FENG SHITING, LONG TINGYU, WANG JIFEI, HUANG BINGSHENG, CHEN JIAZHAO, DONG ZHI, CHEN JIA, ZHOU XIAOQI, PENG ZHENPENG, CHEN YUYING, WANG MENG, LIN CHUXUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FENG SHITING
LONG TINGYU
WANG JIFEI
HUANG BINGSHENG
CHEN JIAZHAO
DONG ZHI
CHEN JIA
ZHOU XIAOQI
PENG ZHENPENG
CHEN YUYING
WANG MENG
LIN CHUXUAN
description The invention discloses a hepatocellular carcinoma CK19 and MVI prediction method based on multi-task learning, and the method comprises the steps: controlling a first feature extraction module, a second feature extraction module and a third feature extraction module to determine a first feature map, a second feature map and a third feature map based on a to-be-predicted MR image; the control prediction module determines a CK19 expression category and an MVI category of the MR image based on the first feature map, the second feature map, and the third feature map. According to the method, rich image features carried by the to-be-predicted MR image are directly extracted through the prediction network model, and the problem that the prediction performance of the model is affected by subjectivity during image feature analysis can be avoided. Meanwhile, CK19 expression features are extracted through a first feature extraction module, CK19 expression and MVI shared features are extracted through a second feature
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114882996A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114882996A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114882996A3</originalsourceid><addsrcrecordid>eNqNykEKwjAQQNFuXIh6h_EAXURFmqUEpSK6Km7LmEw1OE1CMr2_CB7A1efBn1ddSwklWmKeGDNYzNaHOCKYi9KAwcH1foaUyXkrPgYYSV7RwQMLOfh6YvG1YHkDE-bgw3NZzQbkQqtfF9X6dOxMW1OKPZWElgJJb25K7Zpmo_X-sP3n-QAcPDf9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Hepatocellular carcinoma CK19 and MVI prediction method based on multi-task learning</title><source>esp@cenet</source><creator>FENG SHITING ; LONG TINGYU ; WANG JIFEI ; HUANG BINGSHENG ; CHEN JIAZHAO ; DONG ZHI ; CHEN JIA ; ZHOU XIAOQI ; PENG ZHENPENG ; CHEN YUYING ; WANG MENG ; LIN CHUXUAN</creator><creatorcontrib>FENG SHITING ; LONG TINGYU ; WANG JIFEI ; HUANG BINGSHENG ; CHEN JIAZHAO ; DONG ZHI ; CHEN JIA ; ZHOU XIAOQI ; PENG ZHENPENG ; CHEN YUYING ; WANG MENG ; LIN CHUXUAN</creatorcontrib><description>The invention discloses a hepatocellular carcinoma CK19 and MVI prediction method based on multi-task learning, and the method comprises the steps: controlling a first feature extraction module, a second feature extraction module and a third feature extraction module to determine a first feature map, a second feature map and a third feature map based on a to-be-predicted MR image; the control prediction module determines a CK19 expression category and an MVI category of the MR image based on the first feature map, the second feature map, and the third feature map. According to the method, rich image features carried by the to-be-predicted MR image are directly extracted through the prediction network model, and the problem that the prediction performance of the model is affected by subjectivity during image feature analysis can be avoided. Meanwhile, CK19 expression features are extracted through a first feature extraction module, CK19 expression and MVI shared features are extracted through a second feature</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220809&amp;DB=EPODOC&amp;CC=CN&amp;NR=114882996A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220809&amp;DB=EPODOC&amp;CC=CN&amp;NR=114882996A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FENG SHITING</creatorcontrib><creatorcontrib>LONG TINGYU</creatorcontrib><creatorcontrib>WANG JIFEI</creatorcontrib><creatorcontrib>HUANG BINGSHENG</creatorcontrib><creatorcontrib>CHEN JIAZHAO</creatorcontrib><creatorcontrib>DONG ZHI</creatorcontrib><creatorcontrib>CHEN JIA</creatorcontrib><creatorcontrib>ZHOU XIAOQI</creatorcontrib><creatorcontrib>PENG ZHENPENG</creatorcontrib><creatorcontrib>CHEN YUYING</creatorcontrib><creatorcontrib>WANG MENG</creatorcontrib><creatorcontrib>LIN CHUXUAN</creatorcontrib><title>Hepatocellular carcinoma CK19 and MVI prediction method based on multi-task learning</title><description>The invention discloses a hepatocellular carcinoma CK19 and MVI prediction method based on multi-task learning, and the method comprises the steps: controlling a first feature extraction module, a second feature extraction module and a third feature extraction module to determine a first feature map, a second feature map and a third feature map based on a to-be-predicted MR image; the control prediction module determines a CK19 expression category and an MVI category of the MR image based on the first feature map, the second feature map, and the third feature map. According to the method, rich image features carried by the to-be-predicted MR image are directly extracted through the prediction network model, and the problem that the prediction performance of the model is affected by subjectivity during image feature analysis can be avoided. Meanwhile, CK19 expression features are extracted through a first feature extraction module, CK19 expression and MVI shared features are extracted through a second feature</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNykEKwjAQQNFuXIh6h_EAXURFmqUEpSK6Km7LmEw1OE1CMr2_CB7A1efBn1ddSwklWmKeGDNYzNaHOCKYi9KAwcH1foaUyXkrPgYYSV7RwQMLOfh6YvG1YHkDE-bgw3NZzQbkQqtfF9X6dOxMW1OKPZWElgJJb25K7Zpmo_X-sP3n-QAcPDf9</recordid><startdate>20220809</startdate><enddate>20220809</enddate><creator>FENG SHITING</creator><creator>LONG TINGYU</creator><creator>WANG JIFEI</creator><creator>HUANG BINGSHENG</creator><creator>CHEN JIAZHAO</creator><creator>DONG ZHI</creator><creator>CHEN JIA</creator><creator>ZHOU XIAOQI</creator><creator>PENG ZHENPENG</creator><creator>CHEN YUYING</creator><creator>WANG MENG</creator><creator>LIN CHUXUAN</creator><scope>EVB</scope></search><sort><creationdate>20220809</creationdate><title>Hepatocellular carcinoma CK19 and MVI prediction method based on multi-task learning</title><author>FENG SHITING ; LONG TINGYU ; WANG JIFEI ; HUANG BINGSHENG ; CHEN JIAZHAO ; DONG ZHI ; CHEN JIA ; ZHOU XIAOQI ; PENG ZHENPENG ; CHEN YUYING ; WANG MENG ; LIN CHUXUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114882996A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>FENG SHITING</creatorcontrib><creatorcontrib>LONG TINGYU</creatorcontrib><creatorcontrib>WANG JIFEI</creatorcontrib><creatorcontrib>HUANG BINGSHENG</creatorcontrib><creatorcontrib>CHEN JIAZHAO</creatorcontrib><creatorcontrib>DONG ZHI</creatorcontrib><creatorcontrib>CHEN JIA</creatorcontrib><creatorcontrib>ZHOU XIAOQI</creatorcontrib><creatorcontrib>PENG ZHENPENG</creatorcontrib><creatorcontrib>CHEN YUYING</creatorcontrib><creatorcontrib>WANG MENG</creatorcontrib><creatorcontrib>LIN CHUXUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FENG SHITING</au><au>LONG TINGYU</au><au>WANG JIFEI</au><au>HUANG BINGSHENG</au><au>CHEN JIAZHAO</au><au>DONG ZHI</au><au>CHEN JIA</au><au>ZHOU XIAOQI</au><au>PENG ZHENPENG</au><au>CHEN YUYING</au><au>WANG MENG</au><au>LIN CHUXUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Hepatocellular carcinoma CK19 and MVI prediction method based on multi-task learning</title><date>2022-08-09</date><risdate>2022</risdate><abstract>The invention discloses a hepatocellular carcinoma CK19 and MVI prediction method based on multi-task learning, and the method comprises the steps: controlling a first feature extraction module, a second feature extraction module and a third feature extraction module to determine a first feature map, a second feature map and a third feature map based on a to-be-predicted MR image; the control prediction module determines a CK19 expression category and an MVI category of the MR image based on the first feature map, the second feature map, and the third feature map. According to the method, rich image features carried by the to-be-predicted MR image are directly extracted through the prediction network model, and the problem that the prediction performance of the model is affected by subjectivity during image feature analysis can be avoided. Meanwhile, CK19 expression features are extracted through a first feature extraction module, CK19 expression and MVI shared features are extracted through a second feature</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114882996A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Hepatocellular carcinoma CK19 and MVI prediction method based on multi-task learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FENG%20SHITING&rft.date=2022-08-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114882996A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true