AUV target searching method combining RRT and artificial potential field method

The invention belongs to the technical field of autonomous control of an unmanned system, and particularly relates to an RRT and artificial potential field method combined AUV target searching method. Aiming at the problem of planning limitation of an artificial potential field algorithm in a dense...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG YUN, TANG ZHAODONG, LI JUAN, CHEN TAO, ZHANG ZIHAO, ZHOU JIAJIA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG YUN
TANG ZHAODONG
LI JUAN
CHEN TAO
ZHANG ZIHAO
ZHOU JIAJIA
description The invention belongs to the technical field of autonomous control of an unmanned system, and particularly relates to an RRT and artificial potential field method combined AUV target searching method. Aiming at the problem of planning limitation of an artificial potential field algorithm in a dense obstacle environment, the problem that a target cannot be reached in the AUV search process of the artificial potential field method is solved by utilizing the randomness characteristic of the RRT algorithm. Through the combination of the two, the target accessibility of the AUV in the three-dimensional dense obstacle environment is improved. According to the method, the search planning problem in the three-dimensional dense obstacle environment is solved, a new thought is provided for planning in the complex environment, and the method has innovativeness and practical applicability and can be used for the practical environment. 本发明属于无人系统的自主控制技术领域,具体涉及一种RRT与人工势场法相结合的AUV目标搜索方法。本发明针对人工势场算法在密集障碍物环境下的规划局限性问题,利用RRT算法自身的
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114879706A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114879706A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114879706A3</originalsourceid><addsrcrecordid>eNrjZPB3DA1TKEksSk8tUShOTSxKzsjMS1fITS3JyE9RSM7PTcrMAwkEBYUoJOalKCQWlWSmZSZnJuYoFOSXpOaVgFhpmak5KVA9PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDEwtzS3MDM0ZgYNQAMyzaC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUV target searching method combining RRT and artificial potential field method</title><source>esp@cenet</source><creator>ZHANG YUN ; TANG ZHAODONG ; LI JUAN ; CHEN TAO ; ZHANG ZIHAO ; ZHOU JIAJIA</creator><creatorcontrib>ZHANG YUN ; TANG ZHAODONG ; LI JUAN ; CHEN TAO ; ZHANG ZIHAO ; ZHOU JIAJIA</creatorcontrib><description>The invention belongs to the technical field of autonomous control of an unmanned system, and particularly relates to an RRT and artificial potential field method combined AUV target searching method. Aiming at the problem of planning limitation of an artificial potential field algorithm in a dense obstacle environment, the problem that a target cannot be reached in the AUV search process of the artificial potential field method is solved by utilizing the randomness characteristic of the RRT algorithm. Through the combination of the two, the target accessibility of the AUV in the three-dimensional dense obstacle environment is improved. According to the method, the search planning problem in the three-dimensional dense obstacle environment is solved, a new thought is provided for planning in the complex environment, and the method has innovativeness and practical applicability and can be used for the practical environment. 本发明属于无人系统的自主控制技术领域,具体涉及一种RRT与人工势场法相结合的AUV目标搜索方法。本发明针对人工势场算法在密集障碍物环境下的规划局限性问题,利用RRT算法自身的</description><language>chi ; eng</language><subject>CONTROLLING ; PHYSICS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220809&amp;DB=EPODOC&amp;CC=CN&amp;NR=114879706A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220809&amp;DB=EPODOC&amp;CC=CN&amp;NR=114879706A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG YUN</creatorcontrib><creatorcontrib>TANG ZHAODONG</creatorcontrib><creatorcontrib>LI JUAN</creatorcontrib><creatorcontrib>CHEN TAO</creatorcontrib><creatorcontrib>ZHANG ZIHAO</creatorcontrib><creatorcontrib>ZHOU JIAJIA</creatorcontrib><title>AUV target searching method combining RRT and artificial potential field method</title><description>The invention belongs to the technical field of autonomous control of an unmanned system, and particularly relates to an RRT and artificial potential field method combined AUV target searching method. Aiming at the problem of planning limitation of an artificial potential field algorithm in a dense obstacle environment, the problem that a target cannot be reached in the AUV search process of the artificial potential field method is solved by utilizing the randomness characteristic of the RRT algorithm. Through the combination of the two, the target accessibility of the AUV in the three-dimensional dense obstacle environment is improved. According to the method, the search planning problem in the three-dimensional dense obstacle environment is solved, a new thought is provided for planning in the complex environment, and the method has innovativeness and practical applicability and can be used for the practical environment. 本发明属于无人系统的自主控制技术领域,具体涉及一种RRT与人工势场法相结合的AUV目标搜索方法。本发明针对人工势场算法在密集障碍物环境下的规划局限性问题,利用RRT算法自身的</description><subject>CONTROLLING</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB3DA1TKEksSk8tUShOTSxKzsjMS1fITS3JyE9RSM7PTcrMAwkEBYUoJOalKCQWlWSmZSZnJuYoFOSXpOaVgFhpmak5KVA9PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDEwtzS3MDM0ZgYNQAMyzaC</recordid><startdate>20220809</startdate><enddate>20220809</enddate><creator>ZHANG YUN</creator><creator>TANG ZHAODONG</creator><creator>LI JUAN</creator><creator>CHEN TAO</creator><creator>ZHANG ZIHAO</creator><creator>ZHOU JIAJIA</creator><scope>EVB</scope></search><sort><creationdate>20220809</creationdate><title>AUV target searching method combining RRT and artificial potential field method</title><author>ZHANG YUN ; TANG ZHAODONG ; LI JUAN ; CHEN TAO ; ZHANG ZIHAO ; ZHOU JIAJIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114879706A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CONTROLLING</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG YUN</creatorcontrib><creatorcontrib>TANG ZHAODONG</creatorcontrib><creatorcontrib>LI JUAN</creatorcontrib><creatorcontrib>CHEN TAO</creatorcontrib><creatorcontrib>ZHANG ZIHAO</creatorcontrib><creatorcontrib>ZHOU JIAJIA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG YUN</au><au>TANG ZHAODONG</au><au>LI JUAN</au><au>CHEN TAO</au><au>ZHANG ZIHAO</au><au>ZHOU JIAJIA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUV target searching method combining RRT and artificial potential field method</title><date>2022-08-09</date><risdate>2022</risdate><abstract>The invention belongs to the technical field of autonomous control of an unmanned system, and particularly relates to an RRT and artificial potential field method combined AUV target searching method. Aiming at the problem of planning limitation of an artificial potential field algorithm in a dense obstacle environment, the problem that a target cannot be reached in the AUV search process of the artificial potential field method is solved by utilizing the randomness characteristic of the RRT algorithm. Through the combination of the two, the target accessibility of the AUV in the three-dimensional dense obstacle environment is improved. According to the method, the search planning problem in the three-dimensional dense obstacle environment is solved, a new thought is provided for planning in the complex environment, and the method has innovativeness and practical applicability and can be used for the practical environment. 本发明属于无人系统的自主控制技术领域,具体涉及一种RRT与人工势场法相结合的AUV目标搜索方法。本发明针对人工势场算法在密集障碍物环境下的规划局限性问题,利用RRT算法自身的</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114879706A
source esp@cenet
subjects CONTROLLING
PHYSICS
REGULATING
SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
title AUV target searching method combining RRT and artificial potential field method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20YUN&rft.date=2022-08-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114879706A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true