Metalearning-based strategy game behavior prediction method and predictor
The invention relates to a behavior prediction method and predictor of a strategy game based on meta-learning in the technical field of strategy games. The method comprises the steps of obtaining a network attack and defense game data set, dividing the data set into a new task used for testing the e...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI PENG YUAN WEILIN GU XUEQIANG CHEN SHAOFEI LU LINA SU JIONGMING CHEN JIAXING ZOU MINGWO HU ZHENZHEN |
description | The invention relates to a behavior prediction method and predictor of a strategy game based on meta-learning in the technical field of strategy games. The method comprises the steps of obtaining a network attack and defense game data set, dividing the data set into a new task used for testing the effect of a trained behavior prediction model and a training sample used for meta-learning, and training the constructed behavior prediction model based on a deep neural network by adopting a meta-learning method, and the trained behavior prediction model is used to predict the strategic behavior of the attacker in the network attack and defense game in the new task. According to the method, a task classification method of unsupervised learning and a meta-learning method of an expert mixed architecture are adopted, the prediction precision and prediction speed of strategic behaviors of attackers in a network attack and defense game can be obviously improved in a scene with a small network attack and defense game dat |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114866356A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114866356A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114866356A3</originalsourceid><addsrcrecordid>eNrjZPD0TS1JzElNLMrLzEvXTUosTk1RKC4pSixJTa9USE_MTVVISs1ILMvML1IoKEpNyUwuyczPU8hNLcnIT1FIzEuBieYX8TCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MTCzMzY1MzR2Ni1AAAHTw1MQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Metalearning-based strategy game behavior prediction method and predictor</title><source>esp@cenet</source><creator>LI PENG ; YUAN WEILIN ; GU XUEQIANG ; CHEN SHAOFEI ; LU LINA ; SU JIONGMING ; CHEN JIAXING ; ZOU MINGWO ; HU ZHENZHEN</creator><creatorcontrib>LI PENG ; YUAN WEILIN ; GU XUEQIANG ; CHEN SHAOFEI ; LU LINA ; SU JIONGMING ; CHEN JIAXING ; ZOU MINGWO ; HU ZHENZHEN</creatorcontrib><description>The invention relates to a behavior prediction method and predictor of a strategy game based on meta-learning in the technical field of strategy games. The method comprises the steps of obtaining a network attack and defense game data set, dividing the data set into a new task used for testing the effect of a trained behavior prediction model and a training sample used for meta-learning, and training the constructed behavior prediction model based on a deep neural network by adopting a meta-learning method, and the trained behavior prediction model is used to predict the strategic behavior of the attacker in the network attack and defense game in the new task. According to the method, a task classification method of unsupervised learning and a meta-learning method of an expert mixed architecture are adopted, the prediction precision and prediction speed of strategic behaviors of attackers in a network attack and defense game can be obviously improved in a scene with a small network attack and defense game dat</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220805&DB=EPODOC&CC=CN&NR=114866356A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220805&DB=EPODOC&CC=CN&NR=114866356A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>YUAN WEILIN</creatorcontrib><creatorcontrib>GU XUEQIANG</creatorcontrib><creatorcontrib>CHEN SHAOFEI</creatorcontrib><creatorcontrib>LU LINA</creatorcontrib><creatorcontrib>SU JIONGMING</creatorcontrib><creatorcontrib>CHEN JIAXING</creatorcontrib><creatorcontrib>ZOU MINGWO</creatorcontrib><creatorcontrib>HU ZHENZHEN</creatorcontrib><title>Metalearning-based strategy game behavior prediction method and predictor</title><description>The invention relates to a behavior prediction method and predictor of a strategy game based on meta-learning in the technical field of strategy games. The method comprises the steps of obtaining a network attack and defense game data set, dividing the data set into a new task used for testing the effect of a trained behavior prediction model and a training sample used for meta-learning, and training the constructed behavior prediction model based on a deep neural network by adopting a meta-learning method, and the trained behavior prediction model is used to predict the strategic behavior of the attacker in the network attack and defense game in the new task. According to the method, a task classification method of unsupervised learning and a meta-learning method of an expert mixed architecture are adopted, the prediction precision and prediction speed of strategic behaviors of attackers in a network attack and defense game can be obviously improved in a scene with a small network attack and defense game dat</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD0TS1JzElNLMrLzEvXTUosTk1RKC4pSixJTa9USE_MTVVISs1ILMvML1IoKEpNyUwuyczPU8hNLcnIT1FIzEuBieYX8TCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MTCzMzY1MzR2Ni1AAAHTw1MQ</recordid><startdate>20220805</startdate><enddate>20220805</enddate><creator>LI PENG</creator><creator>YUAN WEILIN</creator><creator>GU XUEQIANG</creator><creator>CHEN SHAOFEI</creator><creator>LU LINA</creator><creator>SU JIONGMING</creator><creator>CHEN JIAXING</creator><creator>ZOU MINGWO</creator><creator>HU ZHENZHEN</creator><scope>EVB</scope></search><sort><creationdate>20220805</creationdate><title>Metalearning-based strategy game behavior prediction method and predictor</title><author>LI PENG ; YUAN WEILIN ; GU XUEQIANG ; CHEN SHAOFEI ; LU LINA ; SU JIONGMING ; CHEN JIAXING ; ZOU MINGWO ; HU ZHENZHEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114866356A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>YUAN WEILIN</creatorcontrib><creatorcontrib>GU XUEQIANG</creatorcontrib><creatorcontrib>CHEN SHAOFEI</creatorcontrib><creatorcontrib>LU LINA</creatorcontrib><creatorcontrib>SU JIONGMING</creatorcontrib><creatorcontrib>CHEN JIAXING</creatorcontrib><creatorcontrib>ZOU MINGWO</creatorcontrib><creatorcontrib>HU ZHENZHEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI PENG</au><au>YUAN WEILIN</au><au>GU XUEQIANG</au><au>CHEN SHAOFEI</au><au>LU LINA</au><au>SU JIONGMING</au><au>CHEN JIAXING</au><au>ZOU MINGWO</au><au>HU ZHENZHEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Metalearning-based strategy game behavior prediction method and predictor</title><date>2022-08-05</date><risdate>2022</risdate><abstract>The invention relates to a behavior prediction method and predictor of a strategy game based on meta-learning in the technical field of strategy games. The method comprises the steps of obtaining a network attack and defense game data set, dividing the data set into a new task used for testing the effect of a trained behavior prediction model and a training sample used for meta-learning, and training the constructed behavior prediction model based on a deep neural network by adopting a meta-learning method, and the trained behavior prediction model is used to predict the strategic behavior of the attacker in the network attack and defense game in the new task. According to the method, a task classification method of unsupervised learning and a meta-learning method of an expert mixed architecture are adopted, the prediction precision and prediction speed of strategic behaviors of attackers in a network attack and defense game can be obviously improved in a scene with a small network attack and defense game dat</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114866356A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Metalearning-based strategy game behavior prediction method and predictor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20PENG&rft.date=2022-08-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114866356A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |