Expression recognition method based on double-branch mixed residual connection

The invention provides an expression recognition method based on double-branch mixed residual connection. The method specifically comprises the steps that ResNet18 is used as a trunk feature extraction network, a double-branch multi-residual connection mode is designed on the basis, and feature extr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LU XIUWEN, ZHANG QI, HAN XUE, ZHANG HONGYING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LU XIUWEN
ZHANG QI
HAN XUE
ZHANG HONGYING
description The invention provides an expression recognition method based on double-branch mixed residual connection. The method specifically comprises the steps that ResNet18 is used as a trunk feature extraction network, a double-branch multi-residual connection mode is designed on the basis, and feature extraction is completed; secondly, comprehensively analyzing problems in two aspects of network depth and width, fusing depth separable convolution, and constructing a lightweight expression recognition network; and finally, according to the characteristics of the facial expression information, in order to obtain more accurate and perfect feature information, adding an adaptive feature fusion module ASFF, carrying out analysis and verification on the fused information, selecting a hierarchy with the most superior expression for output, and carrying out final expression classification prediction. According to the method, a perfect feature extraction mechanism and a self-adaptive feature fusion mode are combined, and com
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114863522A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114863522A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114863522A3</originalsourceid><addsrcrecordid>eNrjZPBzrSgoSi0uzszPUyhKTc5Pz8ssAbFzU0sy8lMUkhKLU1MUgPyU_NKknFTdpKLEvOQMhdzMCqAwUF9mSmlijkJyfl5eajJIHw8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzQ0sTAzNjUycjQmRg0AYz83GQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Expression recognition method based on double-branch mixed residual connection</title><source>esp@cenet</source><creator>LU XIUWEN ; ZHANG QI ; HAN XUE ; ZHANG HONGYING</creator><creatorcontrib>LU XIUWEN ; ZHANG QI ; HAN XUE ; ZHANG HONGYING</creatorcontrib><description>The invention provides an expression recognition method based on double-branch mixed residual connection. The method specifically comprises the steps that ResNet18 is used as a trunk feature extraction network, a double-branch multi-residual connection mode is designed on the basis, and feature extraction is completed; secondly, comprehensively analyzing problems in two aspects of network depth and width, fusing depth separable convolution, and constructing a lightweight expression recognition network; and finally, according to the characteristics of the facial expression information, in order to obtain more accurate and perfect feature information, adding an adaptive feature fusion module ASFF, carrying out analysis and verification on the fused information, selecting a hierarchy with the most superior expression for output, and carrying out final expression classification prediction. According to the method, a perfect feature extraction mechanism and a self-adaptive feature fusion mode are combined, and com</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220805&amp;DB=EPODOC&amp;CC=CN&amp;NR=114863522A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220805&amp;DB=EPODOC&amp;CC=CN&amp;NR=114863522A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU XIUWEN</creatorcontrib><creatorcontrib>ZHANG QI</creatorcontrib><creatorcontrib>HAN XUE</creatorcontrib><creatorcontrib>ZHANG HONGYING</creatorcontrib><title>Expression recognition method based on double-branch mixed residual connection</title><description>The invention provides an expression recognition method based on double-branch mixed residual connection. The method specifically comprises the steps that ResNet18 is used as a trunk feature extraction network, a double-branch multi-residual connection mode is designed on the basis, and feature extraction is completed; secondly, comprehensively analyzing problems in two aspects of network depth and width, fusing depth separable convolution, and constructing a lightweight expression recognition network; and finally, according to the characteristics of the facial expression information, in order to obtain more accurate and perfect feature information, adding an adaptive feature fusion module ASFF, carrying out analysis and verification on the fused information, selecting a hierarchy with the most superior expression for output, and carrying out final expression classification prediction. According to the method, a perfect feature extraction mechanism and a self-adaptive feature fusion mode are combined, and com</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBzrSgoSi0uzszPUyhKTc5Pz8ssAbFzU0sy8lMUkhKLU1MUgPyU_NKknFTdpKLEvOQMhdzMCqAwUF9mSmlijkJyfl5eajJIHw8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzQ0sTAzNjUycjQmRg0AYz83GQ</recordid><startdate>20220805</startdate><enddate>20220805</enddate><creator>LU XIUWEN</creator><creator>ZHANG QI</creator><creator>HAN XUE</creator><creator>ZHANG HONGYING</creator><scope>EVB</scope></search><sort><creationdate>20220805</creationdate><title>Expression recognition method based on double-branch mixed residual connection</title><author>LU XIUWEN ; ZHANG QI ; HAN XUE ; ZHANG HONGYING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114863522A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LU XIUWEN</creatorcontrib><creatorcontrib>ZHANG QI</creatorcontrib><creatorcontrib>HAN XUE</creatorcontrib><creatorcontrib>ZHANG HONGYING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU XIUWEN</au><au>ZHANG QI</au><au>HAN XUE</au><au>ZHANG HONGYING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Expression recognition method based on double-branch mixed residual connection</title><date>2022-08-05</date><risdate>2022</risdate><abstract>The invention provides an expression recognition method based on double-branch mixed residual connection. The method specifically comprises the steps that ResNet18 is used as a trunk feature extraction network, a double-branch multi-residual connection mode is designed on the basis, and feature extraction is completed; secondly, comprehensively analyzing problems in two aspects of network depth and width, fusing depth separable convolution, and constructing a lightweight expression recognition network; and finally, according to the characteristics of the facial expression information, in order to obtain more accurate and perfect feature information, adding an adaptive feature fusion module ASFF, carrying out analysis and verification on the fused information, selecting a hierarchy with the most superior expression for output, and carrying out final expression classification prediction. According to the method, a perfect feature extraction mechanism and a self-adaptive feature fusion mode are combined, and com</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114863522A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Expression recognition method based on double-branch mixed residual connection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20XIUWEN&rft.date=2022-08-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114863522A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true