Out-of-distribution network flow data detection method based on calculated likelihood ratio

The invention discloses an out-of-distribution network flow data detection method based on a calculated likelihood ratio, and belongs to the field of network flow data detection. The objective of the invention is to improve the accuracy and confidence of network flow data identification. The method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHAO YUE, LIU FAN, SHI KAIYU, CHE JIAZHEN, ZHANG XIAOHUI, FENG SHUAI, SHI JIANTAO, MIAO JUNZHONG, WEI XIANKUI, LIU LIKUN, SONG YUNZU, GE MENGMENG, LI JINGWEI, WANG JIUJIN, GUO MINGHAO, YU XIANGZHAN, YE LIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHAO YUE
LIU FAN
SHI KAIYU
CHE JIAZHEN
ZHANG XIAOHUI
FENG SHUAI
SHI JIANTAO
MIAO JUNZHONG
WEI XIANKUI
LIU LIKUN
SONG YUNZU
GE MENGMENG
LI JINGWEI
WANG JIUJIN
GUO MINGHAO
YU XIANGZHAN
YE LIN
description The invention discloses an out-of-distribution network flow data detection method based on a calculated likelihood ratio, and belongs to the field of network flow data detection. The objective of the invention is to improve the accuracy and confidence of network flow data identification. The method comprises the following steps: extracting network traffic characteristics: the original traffic is a pcap packet, is divided into different data streams according to a quintuple, and is set to extract a data packet length sequence, calculate a packet arrival time interval sequence, store the sequences and generate a CSV file as original training data of model training; the method comprises the following steps: training an original classification model by using original training data, training the original classification model by adopting a deep learning algorithm long-short-term memory network to obtain a model trained by the original training data, generating disturbance data, generating disturbance data by adopti
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114844840A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114844840A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114844840A3</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRbNxIeodxgMELHbhVoriSjfuXJRpMqWhY6ckE3p9g3gA4cPn8x78tXk9slrprQ9JY-iyBplgIl0kjtCzLOBRETwpuS97kw7iocNEHsp2yC4zalkcRuIwSMERi7w1qx450e7XG7O_Xp7NzdIsLaUZHZWntrlXVX2qSw7n4z_OB6ZNO9o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Out-of-distribution network flow data detection method based on calculated likelihood ratio</title><source>esp@cenet</source><creator>ZHAO YUE ; LIU FAN ; SHI KAIYU ; CHE JIAZHEN ; ZHANG XIAOHUI ; FENG SHUAI ; SHI JIANTAO ; MIAO JUNZHONG ; WEI XIANKUI ; LIU LIKUN ; SONG YUNZU ; GE MENGMENG ; LI JINGWEI ; WANG JIUJIN ; GUO MINGHAO ; YU XIANGZHAN ; YE LIN</creator><creatorcontrib>ZHAO YUE ; LIU FAN ; SHI KAIYU ; CHE JIAZHEN ; ZHANG XIAOHUI ; FENG SHUAI ; SHI JIANTAO ; MIAO JUNZHONG ; WEI XIANKUI ; LIU LIKUN ; SONG YUNZU ; GE MENGMENG ; LI JINGWEI ; WANG JIUJIN ; GUO MINGHAO ; YU XIANGZHAN ; YE LIN</creatorcontrib><description>The invention discloses an out-of-distribution network flow data detection method based on a calculated likelihood ratio, and belongs to the field of network flow data detection. The objective of the invention is to improve the accuracy and confidence of network flow data identification. The method comprises the following steps: extracting network traffic characteristics: the original traffic is a pcap packet, is divided into different data streams according to a quintuple, and is set to extract a data packet length sequence, calculate a packet arrival time interval sequence, store the sequences and generate a CSV file as original training data of model training; the method comprises the following steps: training an original classification model by using original training data, training the original classification model by adopting a deep learning algorithm long-short-term memory network to obtain a model trained by the original training data, generating disturbance data, generating disturbance data by adopti</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220802&amp;DB=EPODOC&amp;CC=CN&amp;NR=114844840A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220802&amp;DB=EPODOC&amp;CC=CN&amp;NR=114844840A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO YUE</creatorcontrib><creatorcontrib>LIU FAN</creatorcontrib><creatorcontrib>SHI KAIYU</creatorcontrib><creatorcontrib>CHE JIAZHEN</creatorcontrib><creatorcontrib>ZHANG XIAOHUI</creatorcontrib><creatorcontrib>FENG SHUAI</creatorcontrib><creatorcontrib>SHI JIANTAO</creatorcontrib><creatorcontrib>MIAO JUNZHONG</creatorcontrib><creatorcontrib>WEI XIANKUI</creatorcontrib><creatorcontrib>LIU LIKUN</creatorcontrib><creatorcontrib>SONG YUNZU</creatorcontrib><creatorcontrib>GE MENGMENG</creatorcontrib><creatorcontrib>LI JINGWEI</creatorcontrib><creatorcontrib>WANG JIUJIN</creatorcontrib><creatorcontrib>GUO MINGHAO</creatorcontrib><creatorcontrib>YU XIANGZHAN</creatorcontrib><creatorcontrib>YE LIN</creatorcontrib><title>Out-of-distribution network flow data detection method based on calculated likelihood ratio</title><description>The invention discloses an out-of-distribution network flow data detection method based on a calculated likelihood ratio, and belongs to the field of network flow data detection. The objective of the invention is to improve the accuracy and confidence of network flow data identification. The method comprises the following steps: extracting network traffic characteristics: the original traffic is a pcap packet, is divided into different data streams according to a quintuple, and is set to extract a data packet length sequence, calculate a packet arrival time interval sequence, store the sequences and generate a CSV file as original training data of model training; the method comprises the following steps: training an original classification model by using original training data, training the original classification model by adopting a deep learning algorithm long-short-term memory network to obtain a model trained by the original training data, generating disturbance data, generating disturbance data by adopti</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQRbNxIeodxgMELHbhVoriSjfuXJRpMqWhY6ckE3p9g3gA4cPn8x78tXk9slrprQ9JY-iyBplgIl0kjtCzLOBRETwpuS97kw7iocNEHsp2yC4zalkcRuIwSMERi7w1qx450e7XG7O_Xp7NzdIsLaUZHZWntrlXVX2qSw7n4z_OB6ZNO9o</recordid><startdate>20220802</startdate><enddate>20220802</enddate><creator>ZHAO YUE</creator><creator>LIU FAN</creator><creator>SHI KAIYU</creator><creator>CHE JIAZHEN</creator><creator>ZHANG XIAOHUI</creator><creator>FENG SHUAI</creator><creator>SHI JIANTAO</creator><creator>MIAO JUNZHONG</creator><creator>WEI XIANKUI</creator><creator>LIU LIKUN</creator><creator>SONG YUNZU</creator><creator>GE MENGMENG</creator><creator>LI JINGWEI</creator><creator>WANG JIUJIN</creator><creator>GUO MINGHAO</creator><creator>YU XIANGZHAN</creator><creator>YE LIN</creator><scope>EVB</scope></search><sort><creationdate>20220802</creationdate><title>Out-of-distribution network flow data detection method based on calculated likelihood ratio</title><author>ZHAO YUE ; LIU FAN ; SHI KAIYU ; CHE JIAZHEN ; ZHANG XIAOHUI ; FENG SHUAI ; SHI JIANTAO ; MIAO JUNZHONG ; WEI XIANKUI ; LIU LIKUN ; SONG YUNZU ; GE MENGMENG ; LI JINGWEI ; WANG JIUJIN ; GUO MINGHAO ; YU XIANGZHAN ; YE LIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114844840A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO YUE</creatorcontrib><creatorcontrib>LIU FAN</creatorcontrib><creatorcontrib>SHI KAIYU</creatorcontrib><creatorcontrib>CHE JIAZHEN</creatorcontrib><creatorcontrib>ZHANG XIAOHUI</creatorcontrib><creatorcontrib>FENG SHUAI</creatorcontrib><creatorcontrib>SHI JIANTAO</creatorcontrib><creatorcontrib>MIAO JUNZHONG</creatorcontrib><creatorcontrib>WEI XIANKUI</creatorcontrib><creatorcontrib>LIU LIKUN</creatorcontrib><creatorcontrib>SONG YUNZU</creatorcontrib><creatorcontrib>GE MENGMENG</creatorcontrib><creatorcontrib>LI JINGWEI</creatorcontrib><creatorcontrib>WANG JIUJIN</creatorcontrib><creatorcontrib>GUO MINGHAO</creatorcontrib><creatorcontrib>YU XIANGZHAN</creatorcontrib><creatorcontrib>YE LIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO YUE</au><au>LIU FAN</au><au>SHI KAIYU</au><au>CHE JIAZHEN</au><au>ZHANG XIAOHUI</au><au>FENG SHUAI</au><au>SHI JIANTAO</au><au>MIAO JUNZHONG</au><au>WEI XIANKUI</au><au>LIU LIKUN</au><au>SONG YUNZU</au><au>GE MENGMENG</au><au>LI JINGWEI</au><au>WANG JIUJIN</au><au>GUO MINGHAO</au><au>YU XIANGZHAN</au><au>YE LIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Out-of-distribution network flow data detection method based on calculated likelihood ratio</title><date>2022-08-02</date><risdate>2022</risdate><abstract>The invention discloses an out-of-distribution network flow data detection method based on a calculated likelihood ratio, and belongs to the field of network flow data detection. The objective of the invention is to improve the accuracy and confidence of network flow data identification. The method comprises the following steps: extracting network traffic characteristics: the original traffic is a pcap packet, is divided into different data streams according to a quintuple, and is set to extract a data packet length sequence, calculate a packet arrival time interval sequence, store the sequences and generate a CSV file as original training data of model training; the method comprises the following steps: training an original classification model by using original training data, training the original classification model by adopting a deep learning algorithm long-short-term memory network to obtain a model trained by the original training data, generating disturbance data, generating disturbance data by adopti</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114844840A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Out-of-distribution network flow data detection method based on calculated likelihood ratio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO%20YUE&rft.date=2022-08-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114844840A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true