Single tree crown detection and segmentation method based on unmanned aerial vehicle image and U-Net

The invention provides an individual tree crown detection and segmentation method based on unmanned aerial vehicle images and U-Net, and relates to the technical field of individual tree segmentation. The method comprises the following steps: collecting unmanned aerial vehicle image data of multiple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU YAO, HUANG YUANWEI, YOU HAOTIAN, YOU QIXU, TANG XU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU YAO
HUANG YUANWEI
YOU HAOTIAN
YOU QIXU
TANG XU
description The invention provides an individual tree crown detection and segmentation method based on unmanned aerial vehicle images and U-Net, and relates to the technical field of individual tree segmentation. The method comprises the following steps: collecting unmanned aerial vehicle image data of multiple tree species in different scenes and making an orthoimage; the method comprises the following steps: intercepting orthoimage sub-images corresponding to different scenes, processing the orthoimage sub-images to obtain required sample data, and performing data enhancement on the sample data to obtain a sample data set; dividing the sample data set into a training set and a test set; obtaining a U-Net model, training and verifying the U-Net model by using the training set and the test set, supervising a prediction result of the U-Net model trained each time by using the mixed Loss function, stopping training of the U-Net model until the mixed Loss function is stable and does not descend any more, and obtaining a tra
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114821370A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114821370A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114821370A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAURNNYiHqH7wECxgjaSlCs0qh1-O6OycLu35D96vUNwQNYzcxjZuaZvTppPUgHgMwQP0IWCqMuCrFYSmgDRHkCAdpFSw9OsDTmlwQWGT1jcOzpjc6Z8c0FbjHN73kNXWazJ_uE1U8X2fp8ulWXHH1skHo2EGhT1UWxO2yLcr85lv90vqUKPhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Single tree crown detection and segmentation method based on unmanned aerial vehicle image and U-Net</title><source>esp@cenet</source><creator>LIU YAO ; HUANG YUANWEI ; YOU HAOTIAN ; YOU QIXU ; TANG XU</creator><creatorcontrib>LIU YAO ; HUANG YUANWEI ; YOU HAOTIAN ; YOU QIXU ; TANG XU</creatorcontrib><description>The invention provides an individual tree crown detection and segmentation method based on unmanned aerial vehicle images and U-Net, and relates to the technical field of individual tree segmentation. The method comprises the following steps: collecting unmanned aerial vehicle image data of multiple tree species in different scenes and making an orthoimage; the method comprises the following steps: intercepting orthoimage sub-images corresponding to different scenes, processing the orthoimage sub-images to obtain required sample data, and performing data enhancement on the sample data to obtain a sample data set; dividing the sample data set into a training set and a test set; obtaining a U-Net model, training and verifying the U-Net model by using the training set and the test set, supervising a prediction result of the U-Net model trained each time by using the mixed Loss function, stopping training of the U-Net model until the mixed Loss function is stable and does not descend any more, and obtaining a tra</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220729&amp;DB=EPODOC&amp;CC=CN&amp;NR=114821370A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220729&amp;DB=EPODOC&amp;CC=CN&amp;NR=114821370A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU YAO</creatorcontrib><creatorcontrib>HUANG YUANWEI</creatorcontrib><creatorcontrib>YOU HAOTIAN</creatorcontrib><creatorcontrib>YOU QIXU</creatorcontrib><creatorcontrib>TANG XU</creatorcontrib><title>Single tree crown detection and segmentation method based on unmanned aerial vehicle image and U-Net</title><description>The invention provides an individual tree crown detection and segmentation method based on unmanned aerial vehicle images and U-Net, and relates to the technical field of individual tree segmentation. The method comprises the following steps: collecting unmanned aerial vehicle image data of multiple tree species in different scenes and making an orthoimage; the method comprises the following steps: intercepting orthoimage sub-images corresponding to different scenes, processing the orthoimage sub-images to obtain required sample data, and performing data enhancement on the sample data to obtain a sample data set; dividing the sample data set into a training set and a test set; obtaining a U-Net model, training and verifying the U-Net model by using the training set and the test set, supervising a prediction result of the U-Net model trained each time by using the mixed Loss function, stopping training of the U-Net model until the mixed Loss function is stable and does not descend any more, and obtaining a tra</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAURNNYiHqH7wECxgjaSlCs0qh1-O6OycLu35D96vUNwQNYzcxjZuaZvTppPUgHgMwQP0IWCqMuCrFYSmgDRHkCAdpFSw9OsDTmlwQWGT1jcOzpjc6Z8c0FbjHN73kNXWazJ_uE1U8X2fp8ulWXHH1skHo2EGhT1UWxO2yLcr85lv90vqUKPhw</recordid><startdate>20220729</startdate><enddate>20220729</enddate><creator>LIU YAO</creator><creator>HUANG YUANWEI</creator><creator>YOU HAOTIAN</creator><creator>YOU QIXU</creator><creator>TANG XU</creator><scope>EVB</scope></search><sort><creationdate>20220729</creationdate><title>Single tree crown detection and segmentation method based on unmanned aerial vehicle image and U-Net</title><author>LIU YAO ; HUANG YUANWEI ; YOU HAOTIAN ; YOU QIXU ; TANG XU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114821370A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU YAO</creatorcontrib><creatorcontrib>HUANG YUANWEI</creatorcontrib><creatorcontrib>YOU HAOTIAN</creatorcontrib><creatorcontrib>YOU QIXU</creatorcontrib><creatorcontrib>TANG XU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU YAO</au><au>HUANG YUANWEI</au><au>YOU HAOTIAN</au><au>YOU QIXU</au><au>TANG XU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Single tree crown detection and segmentation method based on unmanned aerial vehicle image and U-Net</title><date>2022-07-29</date><risdate>2022</risdate><abstract>The invention provides an individual tree crown detection and segmentation method based on unmanned aerial vehicle images and U-Net, and relates to the technical field of individual tree segmentation. The method comprises the following steps: collecting unmanned aerial vehicle image data of multiple tree species in different scenes and making an orthoimage; the method comprises the following steps: intercepting orthoimage sub-images corresponding to different scenes, processing the orthoimage sub-images to obtain required sample data, and performing data enhancement on the sample data to obtain a sample data set; dividing the sample data set into a training set and a test set; obtaining a U-Net model, training and verifying the U-Net model by using the training set and the test set, supervising a prediction result of the U-Net model trained each time by using the mixed Loss function, stopping training of the U-Net model until the mixed Loss function is stable and does not descend any more, and obtaining a tra</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114821370A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Single tree crown detection and segmentation method based on unmanned aerial vehicle image and U-Net
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20YAO&rft.date=2022-07-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114821370A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true