Single image rain removal method based on attention model

The invention belongs to the technical field of image processing, and provides a single image rain removal method based on an attention model, comprising the following steps: S1, constructing a neural network model; s2, designing a loss function; s3, training a neural network model by using the publ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG YAO, YUE ZHUANGZHUANG, GU MINGCEN, HU BIN, LI JINHANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG YAO
YUE ZHUANGZHUANG
GU MINGCEN
HU BIN
LI JINHANG
description The invention belongs to the technical field of image processing, and provides a single image rain removal method based on an attention model, comprising the following steps: S1, constructing a neural network model; s2, designing a loss function; s3, training a neural network model by using the public data to obtain model parameters of the neural network model; and S4, importing the model parameters trained in the step S3 into the neural network model, inputting a rain image, and outputting to obtain a rain-removed image. The technical problem to be solved by the invention is to provide a single image rain removal method based on an attention model, a plug-and-play channel-space attention module is designed, the channel attention module ignores the space information, the space attention module ignores the channel information, the advantages of the channel attention module and the space attention module are combined and applied to a rain removal network, and the rain removal efficiency is improved. And a bette
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114820371A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114820371A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114820371A3</originalsourceid><addsrcrecordid>eNrjZLAMzsxLz0lVyMxNTE9VKErMzFMoSs3NL0vMUchNLcnIT1FISixOTVHIz1NILClJzSvJBLJy81NSc3gYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhiYWRgbG5oaMxMWoAHcwuXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Single image rain removal method based on attention model</title><source>esp@cenet</source><creator>WANG YAO ; YUE ZHUANGZHUANG ; GU MINGCEN ; HU BIN ; LI JINHANG</creator><creatorcontrib>WANG YAO ; YUE ZHUANGZHUANG ; GU MINGCEN ; HU BIN ; LI JINHANG</creatorcontrib><description>The invention belongs to the technical field of image processing, and provides a single image rain removal method based on an attention model, comprising the following steps: S1, constructing a neural network model; s2, designing a loss function; s3, training a neural network model by using the public data to obtain model parameters of the neural network model; and S4, importing the model parameters trained in the step S3 into the neural network model, inputting a rain image, and outputting to obtain a rain-removed image. The technical problem to be solved by the invention is to provide a single image rain removal method based on an attention model, a plug-and-play channel-space attention module is designed, the channel attention module ignores the space information, the space attention module ignores the channel information, the advantages of the channel attention module and the space attention module are combined and applied to a rain removal network, and the rain removal efficiency is improved. And a bette</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220729&amp;DB=EPODOC&amp;CC=CN&amp;NR=114820371A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220729&amp;DB=EPODOC&amp;CC=CN&amp;NR=114820371A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG YAO</creatorcontrib><creatorcontrib>YUE ZHUANGZHUANG</creatorcontrib><creatorcontrib>GU MINGCEN</creatorcontrib><creatorcontrib>HU BIN</creatorcontrib><creatorcontrib>LI JINHANG</creatorcontrib><title>Single image rain removal method based on attention model</title><description>The invention belongs to the technical field of image processing, and provides a single image rain removal method based on an attention model, comprising the following steps: S1, constructing a neural network model; s2, designing a loss function; s3, training a neural network model by using the public data to obtain model parameters of the neural network model; and S4, importing the model parameters trained in the step S3 into the neural network model, inputting a rain image, and outputting to obtain a rain-removed image. The technical problem to be solved by the invention is to provide a single image rain removal method based on an attention model, a plug-and-play channel-space attention module is designed, the channel attention module ignores the space information, the space attention module ignores the channel information, the advantages of the channel attention module and the space attention module are combined and applied to a rain removal network, and the rain removal efficiency is improved. And a bette</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAMzsxLz0lVyMxNTE9VKErMzFMoSs3NL0vMUchNLcnIT1FISixOTVHIz1NILClJzSvJBLJy81NSc3gYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhiYWRgbG5oaMxMWoAHcwuXw</recordid><startdate>20220729</startdate><enddate>20220729</enddate><creator>WANG YAO</creator><creator>YUE ZHUANGZHUANG</creator><creator>GU MINGCEN</creator><creator>HU BIN</creator><creator>LI JINHANG</creator><scope>EVB</scope></search><sort><creationdate>20220729</creationdate><title>Single image rain removal method based on attention model</title><author>WANG YAO ; YUE ZHUANGZHUANG ; GU MINGCEN ; HU BIN ; LI JINHANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114820371A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG YAO</creatorcontrib><creatorcontrib>YUE ZHUANGZHUANG</creatorcontrib><creatorcontrib>GU MINGCEN</creatorcontrib><creatorcontrib>HU BIN</creatorcontrib><creatorcontrib>LI JINHANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG YAO</au><au>YUE ZHUANGZHUANG</au><au>GU MINGCEN</au><au>HU BIN</au><au>LI JINHANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Single image rain removal method based on attention model</title><date>2022-07-29</date><risdate>2022</risdate><abstract>The invention belongs to the technical field of image processing, and provides a single image rain removal method based on an attention model, comprising the following steps: S1, constructing a neural network model; s2, designing a loss function; s3, training a neural network model by using the public data to obtain model parameters of the neural network model; and S4, importing the model parameters trained in the step S3 into the neural network model, inputting a rain image, and outputting to obtain a rain-removed image. The technical problem to be solved by the invention is to provide a single image rain removal method based on an attention model, a plug-and-play channel-space attention module is designed, the channel attention module ignores the space information, the space attention module ignores the channel information, the advantages of the channel attention module and the space attention module are combined and applied to a rain removal network, and the rain removal efficiency is improved. And a bette</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114820371A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Single image rain removal method based on attention model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20YAO&rft.date=2022-07-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114820371A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true