Medical ultrasonic image super-resolution reconstruction method based on multi-image fusion

The invention discloses a medical ultrasonic image super-resolution reconstruction method based on multi-image fusion. The method comprises the following steps: preprocessing a collected medical ultrasonic image data set; fusing a plurality of similar medical ultrasonic images of the same case by ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HU KUNSONG, ZHAO RAN, SHANG YUYE, YUAN JIABIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HU KUNSONG
ZHAO RAN
SHANG YUYE
YUAN JIABIN
description The invention discloses a medical ultrasonic image super-resolution reconstruction method based on multi-image fusion. The method comprises the following steps: preprocessing a collected medical ultrasonic image data set; fusing a plurality of similar medical ultrasonic images of the same case by adopting a contrast-based wavelet image fusion algorithm; extracting texture features of the fused image based on a Gaussian Markov random field model; selecting a low-resolution image pair and a high-resolution image pair for supervised learning according to an automatic image definition evaluation method based on a discrete cosine transform coefficient; constructing a generative adversarial network (GAN) architecture based on a convolutional neural network model CNN to train the training data set; the trained model is used for super-resolution reconstruction of the medical ultrasonic image. According to the method, image fusion, a traditional detail extraction algorithm and a CNN-based generative adversarial networ
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114792287A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114792287A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114792287A3</originalsourceid><addsrcrecordid>eNrjZIj2TU3JTE7MUSjNKSlKLM7Py0xWyMxNTE9VKC4tSC3SLUotzs8pLcnMz1MoSk3OzysuKSpNBnNzU0sy8lMUkhKLU1MUQHygCZm6EL1ppcVAJTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQxNzSyMjC3NGYGDUA7lU8aA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Medical ultrasonic image super-resolution reconstruction method based on multi-image fusion</title><source>esp@cenet</source><creator>HU KUNSONG ; ZHAO RAN ; SHANG YUYE ; YUAN JIABIN</creator><creatorcontrib>HU KUNSONG ; ZHAO RAN ; SHANG YUYE ; YUAN JIABIN</creatorcontrib><description>The invention discloses a medical ultrasonic image super-resolution reconstruction method based on multi-image fusion. The method comprises the following steps: preprocessing a collected medical ultrasonic image data set; fusing a plurality of similar medical ultrasonic images of the same case by adopting a contrast-based wavelet image fusion algorithm; extracting texture features of the fused image based on a Gaussian Markov random field model; selecting a low-resolution image pair and a high-resolution image pair for supervised learning according to an automatic image definition evaluation method based on a discrete cosine transform coefficient; constructing a generative adversarial network (GAN) architecture based on a convolutional neural network model CNN to train the training data set; the trained model is used for super-resolution reconstruction of the medical ultrasonic image. According to the method, image fusion, a traditional detail extraction algorithm and a CNN-based generative adversarial networ</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220726&amp;DB=EPODOC&amp;CC=CN&amp;NR=114792287A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220726&amp;DB=EPODOC&amp;CC=CN&amp;NR=114792287A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU KUNSONG</creatorcontrib><creatorcontrib>ZHAO RAN</creatorcontrib><creatorcontrib>SHANG YUYE</creatorcontrib><creatorcontrib>YUAN JIABIN</creatorcontrib><title>Medical ultrasonic image super-resolution reconstruction method based on multi-image fusion</title><description>The invention discloses a medical ultrasonic image super-resolution reconstruction method based on multi-image fusion. The method comprises the following steps: preprocessing a collected medical ultrasonic image data set; fusing a plurality of similar medical ultrasonic images of the same case by adopting a contrast-based wavelet image fusion algorithm; extracting texture features of the fused image based on a Gaussian Markov random field model; selecting a low-resolution image pair and a high-resolution image pair for supervised learning according to an automatic image definition evaluation method based on a discrete cosine transform coefficient; constructing a generative adversarial network (GAN) architecture based on a convolutional neural network model CNN to train the training data set; the trained model is used for super-resolution reconstruction of the medical ultrasonic image. According to the method, image fusion, a traditional detail extraction algorithm and a CNN-based generative adversarial networ</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIj2TU3JTE7MUSjNKSlKLM7Py0xWyMxNTE9VKC4tSC3SLUotzs8pLcnMz1MoSk3OzysuKSpNBnNzU0sy8lMUkhKLU1MUQHygCZm6EL1ppcVAJTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQxNzSyMjC3NGYGDUA7lU8aA</recordid><startdate>20220726</startdate><enddate>20220726</enddate><creator>HU KUNSONG</creator><creator>ZHAO RAN</creator><creator>SHANG YUYE</creator><creator>YUAN JIABIN</creator><scope>EVB</scope></search><sort><creationdate>20220726</creationdate><title>Medical ultrasonic image super-resolution reconstruction method based on multi-image fusion</title><author>HU KUNSONG ; ZHAO RAN ; SHANG YUYE ; YUAN JIABIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114792287A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>HU KUNSONG</creatorcontrib><creatorcontrib>ZHAO RAN</creatorcontrib><creatorcontrib>SHANG YUYE</creatorcontrib><creatorcontrib>YUAN JIABIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU KUNSONG</au><au>ZHAO RAN</au><au>SHANG YUYE</au><au>YUAN JIABIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Medical ultrasonic image super-resolution reconstruction method based on multi-image fusion</title><date>2022-07-26</date><risdate>2022</risdate><abstract>The invention discloses a medical ultrasonic image super-resolution reconstruction method based on multi-image fusion. The method comprises the following steps: preprocessing a collected medical ultrasonic image data set; fusing a plurality of similar medical ultrasonic images of the same case by adopting a contrast-based wavelet image fusion algorithm; extracting texture features of the fused image based on a Gaussian Markov random field model; selecting a low-resolution image pair and a high-resolution image pair for supervised learning according to an automatic image definition evaluation method based on a discrete cosine transform coefficient; constructing a generative adversarial network (GAN) architecture based on a convolutional neural network model CNN to train the training data set; the trained model is used for super-resolution reconstruction of the medical ultrasonic image. According to the method, image fusion, a traditional detail extraction algorithm and a CNN-based generative adversarial networ</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114792287A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Medical ultrasonic image super-resolution reconstruction method based on multi-image fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20KUNSONG&rft.date=2022-07-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114792287A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true