Power law attribute network geometry generation method

The invention provides a power law attribute network geometry generation method. The method comprises the steps of fitting attribute distribution of a data set; fitting network node degree distribution, and determining distribution parameters; candidate nodes in the hyperbolic space are randomly gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIANG HAO, YE DONGSHENG, LI YANG, CHEN QIMEI, GENG DONGQING, LI HAO, WANG QIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JIANG HAO
YE DONGSHENG
LI YANG
CHEN QIMEI
GENG DONGQING
LI HAO
WANG QIANG
description The invention provides a power law attribute network geometry generation method. The method comprises the steps of fitting attribute distribution of a data set; fitting network node degree distribution, and determining distribution parameters; candidate nodes in the hyperbolic space are randomly generated, and hyperbolic distances between the candidate nodes are calculated; and calculating a connection probability between the candidate nodes, and generating a connection edge according to the connection probability between the candidate nodes. According to the method, the geometric characteristic of the generation model is guaranteed, namely, the nodes are located in the high-dimensional hyperbolic space, and based on the characteristic, the generation model well utilizes the node space structures such as distance, cluster relation and position distribution to analyze the cause of network evolution to form a visual global network overview, so that the network evolution efficiency is improved. And an analysis m
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114781104A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114781104A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114781104A3</originalsourceid><addsrcrecordid>eNrjZDALyC9PLVLISSxXSCwpKcpMKi1JVchLLSnPL8pWSE_Nz00tKaoEMvJSixJLMvPzFIACGfkpPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMRmooyTe2c_Q0MTcwtDQwMTRmBg1AN5qLhs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power law attribute network geometry generation method</title><source>esp@cenet</source><creator>JIANG HAO ; YE DONGSHENG ; LI YANG ; CHEN QIMEI ; GENG DONGQING ; LI HAO ; WANG QIANG</creator><creatorcontrib>JIANG HAO ; YE DONGSHENG ; LI YANG ; CHEN QIMEI ; GENG DONGQING ; LI HAO ; WANG QIANG</creatorcontrib><description>The invention provides a power law attribute network geometry generation method. The method comprises the steps of fitting attribute distribution of a data set; fitting network node degree distribution, and determining distribution parameters; candidate nodes in the hyperbolic space are randomly generated, and hyperbolic distances between the candidate nodes are calculated; and calculating a connection probability between the candidate nodes, and generating a connection edge according to the connection probability between the candidate nodes. According to the method, the geometric characteristic of the generation model is guaranteed, namely, the nodes are located in the high-dimensional hyperbolic space, and based on the characteristic, the generation model well utilizes the node space structures such as distance, cluster relation and position distribution to analyze the cause of network evolution to form a visual global network overview, so that the network evolution efficiency is improved. And an analysis m</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220722&amp;DB=EPODOC&amp;CC=CN&amp;NR=114781104A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220722&amp;DB=EPODOC&amp;CC=CN&amp;NR=114781104A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIANG HAO</creatorcontrib><creatorcontrib>YE DONGSHENG</creatorcontrib><creatorcontrib>LI YANG</creatorcontrib><creatorcontrib>CHEN QIMEI</creatorcontrib><creatorcontrib>GENG DONGQING</creatorcontrib><creatorcontrib>LI HAO</creatorcontrib><creatorcontrib>WANG QIANG</creatorcontrib><title>Power law attribute network geometry generation method</title><description>The invention provides a power law attribute network geometry generation method. The method comprises the steps of fitting attribute distribution of a data set; fitting network node degree distribution, and determining distribution parameters; candidate nodes in the hyperbolic space are randomly generated, and hyperbolic distances between the candidate nodes are calculated; and calculating a connection probability between the candidate nodes, and generating a connection edge according to the connection probability between the candidate nodes. According to the method, the geometric characteristic of the generation model is guaranteed, namely, the nodes are located in the high-dimensional hyperbolic space, and based on the characteristic, the generation model well utilizes the node space structures such as distance, cluster relation and position distribution to analyze the cause of network evolution to form a visual global network overview, so that the network evolution efficiency is improved. And an analysis m</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDALyC9PLVLISSxXSCwpKcpMKi1JVchLLSnPL8pWSE_Nz00tKaoEMvJSixJLMvPzFIACGfkpPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMRmooyTe2c_Q0MTcwtDQwMTRmBg1AN5qLhs</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>JIANG HAO</creator><creator>YE DONGSHENG</creator><creator>LI YANG</creator><creator>CHEN QIMEI</creator><creator>GENG DONGQING</creator><creator>LI HAO</creator><creator>WANG QIANG</creator><scope>EVB</scope></search><sort><creationdate>20220722</creationdate><title>Power law attribute network geometry generation method</title><author>JIANG HAO ; YE DONGSHENG ; LI YANG ; CHEN QIMEI ; GENG DONGQING ; LI HAO ; WANG QIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114781104A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>JIANG HAO</creatorcontrib><creatorcontrib>YE DONGSHENG</creatorcontrib><creatorcontrib>LI YANG</creatorcontrib><creatorcontrib>CHEN QIMEI</creatorcontrib><creatorcontrib>GENG DONGQING</creatorcontrib><creatorcontrib>LI HAO</creatorcontrib><creatorcontrib>WANG QIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIANG HAO</au><au>YE DONGSHENG</au><au>LI YANG</au><au>CHEN QIMEI</au><au>GENG DONGQING</au><au>LI HAO</au><au>WANG QIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power law attribute network geometry generation method</title><date>2022-07-22</date><risdate>2022</risdate><abstract>The invention provides a power law attribute network geometry generation method. The method comprises the steps of fitting attribute distribution of a data set; fitting network node degree distribution, and determining distribution parameters; candidate nodes in the hyperbolic space are randomly generated, and hyperbolic distances between the candidate nodes are calculated; and calculating a connection probability between the candidate nodes, and generating a connection edge according to the connection probability between the candidate nodes. According to the method, the geometric characteristic of the generation model is guaranteed, namely, the nodes are located in the high-dimensional hyperbolic space, and based on the characteristic, the generation model well utilizes the node space structures such as distance, cluster relation and position distribution to analyze the cause of network evolution to form a visual global network overview, so that the network evolution efficiency is improved. And an analysis m</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114781104A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Power law attribute network geometry generation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIANG%20HAO&rft.date=2022-07-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114781104A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true