Capacitive coupling electrical impedance tomography image reconstruction method and device
The invention discloses an image reconstruction method and device for capacitive coupling electrical impedance tomography, and the method comprises the steps: taking an unsupervised deep convolutional network as prior information to restrain an image iteration reconstruction process of capacitive co...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YANG BAO MA GEGE ZHU WENTAO NI YANGFAN |
description | The invention discloses an image reconstruction method and device for capacitive coupling electrical impedance tomography, and the method comprises the steps: taking an unsupervised deep convolutional network as prior information to restrain an image iteration reconstruction process of capacitive coupling electrical impedance tomography, and training a deep neural network with random initialization network parameters, according to the method, the network can learn intrinsic hidden information of the network from a noise label image, a local optimal solution of the noise image is gradually found through operations such as alternate weighted average summation in the training process, a result similar to a real image is generated, and denoising is completed. According to the network prior applied to capacitive coupling electrical impedance tomography, a mode similar to manual prior can be formed to carry out noise constraint on image reconstruction, intelligent parameter adjustment can be carried out according t |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114758031A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114758031A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114758031A3</originalsourceid><addsrcrecordid>eNqNjTEKwkAQRdNYiHqH8QCCIYq2EhQrKyubMMx-k4XNzrKZBLy9KTyA1YPHg7csXjUnFm9-AomOKfjYEgLEshcO5PsEx1FApr22mVP3mSW3oAzROFgexbxG6mGdOuLoyGHygnWxeHMYsPlxVWxv12d93yFpg2HeIsKa-lGWh9PxvK_KS_VP8wWhwjvo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Capacitive coupling electrical impedance tomography image reconstruction method and device</title><source>esp@cenet</source><creator>YANG BAO ; MA GEGE ; ZHU WENTAO ; NI YANGFAN</creator><creatorcontrib>YANG BAO ; MA GEGE ; ZHU WENTAO ; NI YANGFAN</creatorcontrib><description>The invention discloses an image reconstruction method and device for capacitive coupling electrical impedance tomography, and the method comprises the steps: taking an unsupervised deep convolutional network as prior information to restrain an image iteration reconstruction process of capacitive coupling electrical impedance tomography, and training a deep neural network with random initialization network parameters, according to the method, the network can learn intrinsic hidden information of the network from a noise label image, a local optimal solution of the noise image is gradually found through operations such as alternate weighted average summation in the training process, a result similar to a real image is generated, and denoising is completed. According to the network prior applied to capacitive coupling electrical impedance tomography, a mode similar to manual prior can be formed to carry out noise constraint on image reconstruction, intelligent parameter adjustment can be carried out according t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220715&DB=EPODOC&CC=CN&NR=114758031A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220715&DB=EPODOC&CC=CN&NR=114758031A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG BAO</creatorcontrib><creatorcontrib>MA GEGE</creatorcontrib><creatorcontrib>ZHU WENTAO</creatorcontrib><creatorcontrib>NI YANGFAN</creatorcontrib><title>Capacitive coupling electrical impedance tomography image reconstruction method and device</title><description>The invention discloses an image reconstruction method and device for capacitive coupling electrical impedance tomography, and the method comprises the steps: taking an unsupervised deep convolutional network as prior information to restrain an image iteration reconstruction process of capacitive coupling electrical impedance tomography, and training a deep neural network with random initialization network parameters, according to the method, the network can learn intrinsic hidden information of the network from a noise label image, a local optimal solution of the noise image is gradually found through operations such as alternate weighted average summation in the training process, a result similar to a real image is generated, and denoising is completed. According to the network prior applied to capacitive coupling electrical impedance tomography, a mode similar to manual prior can be formed to carry out noise constraint on image reconstruction, intelligent parameter adjustment can be carried out according t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEKwkAQRdNYiHqH8QCCIYq2EhQrKyubMMx-k4XNzrKZBLy9KTyA1YPHg7csXjUnFm9-AomOKfjYEgLEshcO5PsEx1FApr22mVP3mSW3oAzROFgexbxG6mGdOuLoyGHygnWxeHMYsPlxVWxv12d93yFpg2HeIsKa-lGWh9PxvK_KS_VP8wWhwjvo</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>YANG BAO</creator><creator>MA GEGE</creator><creator>ZHU WENTAO</creator><creator>NI YANGFAN</creator><scope>EVB</scope></search><sort><creationdate>20220715</creationdate><title>Capacitive coupling electrical impedance tomography image reconstruction method and device</title><author>YANG BAO ; MA GEGE ; ZHU WENTAO ; NI YANGFAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114758031A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG BAO</creatorcontrib><creatorcontrib>MA GEGE</creatorcontrib><creatorcontrib>ZHU WENTAO</creatorcontrib><creatorcontrib>NI YANGFAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG BAO</au><au>MA GEGE</au><au>ZHU WENTAO</au><au>NI YANGFAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Capacitive coupling electrical impedance tomography image reconstruction method and device</title><date>2022-07-15</date><risdate>2022</risdate><abstract>The invention discloses an image reconstruction method and device for capacitive coupling electrical impedance tomography, and the method comprises the steps: taking an unsupervised deep convolutional network as prior information to restrain an image iteration reconstruction process of capacitive coupling electrical impedance tomography, and training a deep neural network with random initialization network parameters, according to the method, the network can learn intrinsic hidden information of the network from a noise label image, a local optimal solution of the noise image is gradually found through operations such as alternate weighted average summation in the training process, a result similar to a real image is generated, and denoising is completed. According to the network prior applied to capacitive coupling electrical impedance tomography, a mode similar to manual prior can be formed to carry out noise constraint on image reconstruction, intelligent parameter adjustment can be carried out according t</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114758031A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Capacitive coupling electrical impedance tomography image reconstruction method and device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20BAO&rft.date=2022-07-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114758031A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |