Capacitive coupling electrical impedance tomography image reconstruction method and device

The invention discloses an image reconstruction method and device for capacitive coupling electrical impedance tomography, and the method comprises the steps: taking an unsupervised deep convolutional network as prior information to restrain an image iteration reconstruction process of capacitive co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YANG BAO, MA GEGE, ZHU WENTAO, NI YANGFAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YANG BAO
MA GEGE
ZHU WENTAO
NI YANGFAN
description The invention discloses an image reconstruction method and device for capacitive coupling electrical impedance tomography, and the method comprises the steps: taking an unsupervised deep convolutional network as prior information to restrain an image iteration reconstruction process of capacitive coupling electrical impedance tomography, and training a deep neural network with random initialization network parameters, according to the method, the network can learn intrinsic hidden information of the network from a noise label image, a local optimal solution of the noise image is gradually found through operations such as alternate weighted average summation in the training process, a result similar to a real image is generated, and denoising is completed. According to the network prior applied to capacitive coupling electrical impedance tomography, a mode similar to manual prior can be formed to carry out noise constraint on image reconstruction, intelligent parameter adjustment can be carried out according t
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114758031A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114758031A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114758031A3</originalsourceid><addsrcrecordid>eNqNjTEKwkAQRdNYiHqH8QCCIYq2EhQrKyubMMx-k4XNzrKZBLy9KTyA1YPHg7csXjUnFm9-AomOKfjYEgLEshcO5PsEx1FApr22mVP3mSW3oAzROFgexbxG6mGdOuLoyGHygnWxeHMYsPlxVWxv12d93yFpg2HeIsKa-lGWh9PxvK_KS_VP8wWhwjvo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Capacitive coupling electrical impedance tomography image reconstruction method and device</title><source>esp@cenet</source><creator>YANG BAO ; MA GEGE ; ZHU WENTAO ; NI YANGFAN</creator><creatorcontrib>YANG BAO ; MA GEGE ; ZHU WENTAO ; NI YANGFAN</creatorcontrib><description>The invention discloses an image reconstruction method and device for capacitive coupling electrical impedance tomography, and the method comprises the steps: taking an unsupervised deep convolutional network as prior information to restrain an image iteration reconstruction process of capacitive coupling electrical impedance tomography, and training a deep neural network with random initialization network parameters, according to the method, the network can learn intrinsic hidden information of the network from a noise label image, a local optimal solution of the noise image is gradually found through operations such as alternate weighted average summation in the training process, a result similar to a real image is generated, and denoising is completed. According to the network prior applied to capacitive coupling electrical impedance tomography, a mode similar to manual prior can be formed to carry out noise constraint on image reconstruction, intelligent parameter adjustment can be carried out according t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220715&amp;DB=EPODOC&amp;CC=CN&amp;NR=114758031A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220715&amp;DB=EPODOC&amp;CC=CN&amp;NR=114758031A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG BAO</creatorcontrib><creatorcontrib>MA GEGE</creatorcontrib><creatorcontrib>ZHU WENTAO</creatorcontrib><creatorcontrib>NI YANGFAN</creatorcontrib><title>Capacitive coupling electrical impedance tomography image reconstruction method and device</title><description>The invention discloses an image reconstruction method and device for capacitive coupling electrical impedance tomography, and the method comprises the steps: taking an unsupervised deep convolutional network as prior information to restrain an image iteration reconstruction process of capacitive coupling electrical impedance tomography, and training a deep neural network with random initialization network parameters, according to the method, the network can learn intrinsic hidden information of the network from a noise label image, a local optimal solution of the noise image is gradually found through operations such as alternate weighted average summation in the training process, a result similar to a real image is generated, and denoising is completed. According to the network prior applied to capacitive coupling electrical impedance tomography, a mode similar to manual prior can be formed to carry out noise constraint on image reconstruction, intelligent parameter adjustment can be carried out according t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEKwkAQRdNYiHqH8QCCIYq2EhQrKyubMMx-k4XNzrKZBLy9KTyA1YPHg7csXjUnFm9-AomOKfjYEgLEshcO5PsEx1FApr22mVP3mSW3oAzROFgexbxG6mGdOuLoyGHygnWxeHMYsPlxVWxv12d93yFpg2HeIsKa-lGWh9PxvK_KS_VP8wWhwjvo</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>YANG BAO</creator><creator>MA GEGE</creator><creator>ZHU WENTAO</creator><creator>NI YANGFAN</creator><scope>EVB</scope></search><sort><creationdate>20220715</creationdate><title>Capacitive coupling electrical impedance tomography image reconstruction method and device</title><author>YANG BAO ; MA GEGE ; ZHU WENTAO ; NI YANGFAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114758031A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG BAO</creatorcontrib><creatorcontrib>MA GEGE</creatorcontrib><creatorcontrib>ZHU WENTAO</creatorcontrib><creatorcontrib>NI YANGFAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG BAO</au><au>MA GEGE</au><au>ZHU WENTAO</au><au>NI YANGFAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Capacitive coupling electrical impedance tomography image reconstruction method and device</title><date>2022-07-15</date><risdate>2022</risdate><abstract>The invention discloses an image reconstruction method and device for capacitive coupling electrical impedance tomography, and the method comprises the steps: taking an unsupervised deep convolutional network as prior information to restrain an image iteration reconstruction process of capacitive coupling electrical impedance tomography, and training a deep neural network with random initialization network parameters, according to the method, the network can learn intrinsic hidden information of the network from a noise label image, a local optimal solution of the noise image is gradually found through operations such as alternate weighted average summation in the training process, a result similar to a real image is generated, and denoising is completed. According to the network prior applied to capacitive coupling electrical impedance tomography, a mode similar to manual prior can be formed to carry out noise constraint on image reconstruction, intelligent parameter adjustment can be carried out according t</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114758031A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Capacitive coupling electrical impedance tomography image reconstruction method and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20BAO&rft.date=2022-07-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114758031A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true