Signal classification method and device based on fMRI high-dimensional time sequence

The invention discloses a signal classification method and device based on an fMRI (functional magnetic resonance imaging) high-dimensional time sequence, relates to the technical field of machine learning, and particularly relates to a deep learning classification algorithm which only uses function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DONG SHUAI, ZHAO YUXI, FENG HAO, YANG YANG, FANG HANZHENG, ZHANG MINGWEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DONG SHUAI
ZHAO YUXI
FENG HAO
YANG YANG
FANG HANZHENG
ZHANG MINGWEI
description The invention discloses a signal classification method and device based on an fMRI (functional magnetic resonance imaging) high-dimensional time sequence, relates to the technical field of machine learning, and particularly relates to a deep learning classification algorithm which only uses functional magnetic resonance imaging data without considering any demographic information to classify subjects and does not need professionals to perform feature labeling. The method comprises the following steps of: automatically extracting features of each time step of data by using a convolutional neural network to generate a new representation, then inputting the new representation into a time sequence model Transform to learn time sequence features, and finally classifying the learned data. Compared with a traditional machine learning method, the method has the advantages that the optimal feature representation can be directly learned from complex high-dimensional data through deep learning, and a complicated and uns
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114748053A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114748053A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114748053A3</originalsourceid><addsrcrecordid>eNqNizEKwkAQRdNYiHqH8QABQyLaSlC00ELTh3H3JxnY7EZm9fxu4QGs_oP3_jxrHtJ7dmQcq0onhqMETyPiECyxt2TxEQN6ssJSUt31fqFB-iG3MsJrytM_JibF6w1vsMxmHTvF6reLbH06NvU5xxRa6MQGHrGtb0VR7ar9Zlseyn-aL2HqOF0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Signal classification method and device based on fMRI high-dimensional time sequence</title><source>esp@cenet</source><creator>DONG SHUAI ; ZHAO YUXI ; FENG HAO ; YANG YANG ; FANG HANZHENG ; ZHANG MINGWEI</creator><creatorcontrib>DONG SHUAI ; ZHAO YUXI ; FENG HAO ; YANG YANG ; FANG HANZHENG ; ZHANG MINGWEI</creatorcontrib><description>The invention discloses a signal classification method and device based on an fMRI (functional magnetic resonance imaging) high-dimensional time sequence, relates to the technical field of machine learning, and particularly relates to a deep learning classification algorithm which only uses functional magnetic resonance imaging data without considering any demographic information to classify subjects and does not need professionals to perform feature labeling. The method comprises the following steps of: automatically extracting features of each time step of data by using a convolutional neural network to generate a new representation, then inputting the new representation into a time sequence model Transform to learn time sequence features, and finally classifying the learned data. Compared with a traditional machine learning method, the method has the advantages that the optimal feature representation can be directly learned from complex high-dimensional data through deep learning, and a complicated and uns</description><language>chi ; eng</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220715&amp;DB=EPODOC&amp;CC=CN&amp;NR=114748053A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220715&amp;DB=EPODOC&amp;CC=CN&amp;NR=114748053A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DONG SHUAI</creatorcontrib><creatorcontrib>ZHAO YUXI</creatorcontrib><creatorcontrib>FENG HAO</creatorcontrib><creatorcontrib>YANG YANG</creatorcontrib><creatorcontrib>FANG HANZHENG</creatorcontrib><creatorcontrib>ZHANG MINGWEI</creatorcontrib><title>Signal classification method and device based on fMRI high-dimensional time sequence</title><description>The invention discloses a signal classification method and device based on an fMRI (functional magnetic resonance imaging) high-dimensional time sequence, relates to the technical field of machine learning, and particularly relates to a deep learning classification algorithm which only uses functional magnetic resonance imaging data without considering any demographic information to classify subjects and does not need professionals to perform feature labeling. The method comprises the following steps of: automatically extracting features of each time step of data by using a convolutional neural network to generate a new representation, then inputting the new representation into a time sequence model Transform to learn time sequence features, and finally classifying the learned data. Compared with a traditional machine learning method, the method has the advantages that the optimal feature representation can be directly learned from complex high-dimensional data through deep learning, and a complicated and uns</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEKwkAQRdNYiHqH8QABQyLaSlC00ELTh3H3JxnY7EZm9fxu4QGs_oP3_jxrHtJ7dmQcq0onhqMETyPiECyxt2TxEQN6ssJSUt31fqFB-iG3MsJrytM_JibF6w1vsMxmHTvF6reLbH06NvU5xxRa6MQGHrGtb0VR7ar9Zlseyn-aL2HqOF0</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>DONG SHUAI</creator><creator>ZHAO YUXI</creator><creator>FENG HAO</creator><creator>YANG YANG</creator><creator>FANG HANZHENG</creator><creator>ZHANG MINGWEI</creator><scope>EVB</scope></search><sort><creationdate>20220715</creationdate><title>Signal classification method and device based on fMRI high-dimensional time sequence</title><author>DONG SHUAI ; ZHAO YUXI ; FENG HAO ; YANG YANG ; FANG HANZHENG ; ZHANG MINGWEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114748053A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>DONG SHUAI</creatorcontrib><creatorcontrib>ZHAO YUXI</creatorcontrib><creatorcontrib>FENG HAO</creatorcontrib><creatorcontrib>YANG YANG</creatorcontrib><creatorcontrib>FANG HANZHENG</creatorcontrib><creatorcontrib>ZHANG MINGWEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DONG SHUAI</au><au>ZHAO YUXI</au><au>FENG HAO</au><au>YANG YANG</au><au>FANG HANZHENG</au><au>ZHANG MINGWEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Signal classification method and device based on fMRI high-dimensional time sequence</title><date>2022-07-15</date><risdate>2022</risdate><abstract>The invention discloses a signal classification method and device based on an fMRI (functional magnetic resonance imaging) high-dimensional time sequence, relates to the technical field of machine learning, and particularly relates to a deep learning classification algorithm which only uses functional magnetic resonance imaging data without considering any demographic information to classify subjects and does not need professionals to perform feature labeling. The method comprises the following steps of: automatically extracting features of each time step of data by using a convolutional neural network to generate a new representation, then inputting the new representation into a time sequence model Transform to learn time sequence features, and finally classifying the learned data. Compared with a traditional machine learning method, the method has the advantages that the optimal feature representation can be directly learned from complex high-dimensional data through deep learning, and a complicated and uns</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114748053A
source esp@cenet
subjects DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
SURGERY
title Signal classification method and device based on fMRI high-dimensional time sequence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DONG%20SHUAI&rft.date=2022-07-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114748053A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true