Corn pest area detection method combining context perception and multi-scale mixed attention

The invention relates to a corn pest area detection method combining context perception and multi-scale mixed attention. The method comprises the following steps: establishing a training sample set; constructing a corn insect pest area detection model: constructing a basic insect pest area detection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG JUNQING, ZHANG JIE, SHENG JIAJIA, XIE CHENGJUN, LI RUI, PEI HAOTIAN, HUANG HE, ZHANG WEI, SUN YOUQIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG JUNQING
ZHANG JIE
SHENG JIAJIA
XIE CHENGJUN
LI RUI
PEI HAOTIAN
HUANG HE
ZHANG WEI
SUN YOUQIANG
description The invention relates to a corn pest area detection method combining context perception and multi-scale mixed attention. The method comprises the following steps: establishing a training sample set; constructing a corn insect pest area detection model: constructing a basic insect pest area detection model, and improving a feature aggregation network in the basic insect pest area detection model by adopting a multi-scale mixed attention module and a context sensing module to obtain the corn insect pest area detection model; training a corn pest area detection model; and insect pest area detection: inputting a to-be-detected sample into the corn insect pest area detection model, generating positioning information of insect pest areas in the to-be-detected sample, and counting the number of the insect pest areas. According to the invention, through the context sensing module, multi-scale context features are introduced to a small target insect pest area to strengthen the expression ability of target features, th
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114724031A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114724031A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114724031A3</originalsourceid><addsrcrecordid>eNqNykEKwjAQheFuXIh6h_EABWMLrqUorly5FMqYPDWQTEIzQo9vFQ_g6v3wvnl17dIglFGUeACTg8KqT0IR-kyObIo3L14eU4li1AkPFvlrWBzFV1BfF8sBFP0IR6wK-fzLanbnULD67aJaHw-X7lQjpx4ls4VA--5sTLvbtpvG7Jt_zBva9Tws</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Corn pest area detection method combining context perception and multi-scale mixed attention</title><source>esp@cenet</source><creator>ZHANG JUNQING ; ZHANG JIE ; SHENG JIAJIA ; XIE CHENGJUN ; LI RUI ; PEI HAOTIAN ; HUANG HE ; ZHANG WEI ; SUN YOUQIANG</creator><creatorcontrib>ZHANG JUNQING ; ZHANG JIE ; SHENG JIAJIA ; XIE CHENGJUN ; LI RUI ; PEI HAOTIAN ; HUANG HE ; ZHANG WEI ; SUN YOUQIANG</creatorcontrib><description>The invention relates to a corn pest area detection method combining context perception and multi-scale mixed attention. The method comprises the following steps: establishing a training sample set; constructing a corn insect pest area detection model: constructing a basic insect pest area detection model, and improving a feature aggregation network in the basic insect pest area detection model by adopting a multi-scale mixed attention module and a context sensing module to obtain the corn insect pest area detection model; training a corn pest area detection model; and insect pest area detection: inputting a to-be-detected sample into the corn insect pest area detection model, generating positioning information of insect pest areas in the to-be-detected sample, and counting the number of the insect pest areas. According to the invention, through the context sensing module, multi-scale context features are introduced to a small target insect pest area to strengthen the expression ability of target features, th</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220708&amp;DB=EPODOC&amp;CC=CN&amp;NR=114724031A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220708&amp;DB=EPODOC&amp;CC=CN&amp;NR=114724031A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG JUNQING</creatorcontrib><creatorcontrib>ZHANG JIE</creatorcontrib><creatorcontrib>SHENG JIAJIA</creatorcontrib><creatorcontrib>XIE CHENGJUN</creatorcontrib><creatorcontrib>LI RUI</creatorcontrib><creatorcontrib>PEI HAOTIAN</creatorcontrib><creatorcontrib>HUANG HE</creatorcontrib><creatorcontrib>ZHANG WEI</creatorcontrib><creatorcontrib>SUN YOUQIANG</creatorcontrib><title>Corn pest area detection method combining context perception and multi-scale mixed attention</title><description>The invention relates to a corn pest area detection method combining context perception and multi-scale mixed attention. The method comprises the following steps: establishing a training sample set; constructing a corn insect pest area detection model: constructing a basic insect pest area detection model, and improving a feature aggregation network in the basic insect pest area detection model by adopting a multi-scale mixed attention module and a context sensing module to obtain the corn insect pest area detection model; training a corn pest area detection model; and insect pest area detection: inputting a to-be-detected sample into the corn insect pest area detection model, generating positioning information of insect pest areas in the to-be-detected sample, and counting the number of the insect pest areas. According to the invention, through the context sensing module, multi-scale context features are introduced to a small target insect pest area to strengthen the expression ability of target features, th</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNykEKwjAQheFuXIh6h_EABWMLrqUorly5FMqYPDWQTEIzQo9vFQ_g6v3wvnl17dIglFGUeACTg8KqT0IR-kyObIo3L14eU4li1AkPFvlrWBzFV1BfF8sBFP0IR6wK-fzLanbnULD67aJaHw-X7lQjpx4ls4VA--5sTLvbtpvG7Jt_zBva9Tws</recordid><startdate>20220708</startdate><enddate>20220708</enddate><creator>ZHANG JUNQING</creator><creator>ZHANG JIE</creator><creator>SHENG JIAJIA</creator><creator>XIE CHENGJUN</creator><creator>LI RUI</creator><creator>PEI HAOTIAN</creator><creator>HUANG HE</creator><creator>ZHANG WEI</creator><creator>SUN YOUQIANG</creator><scope>EVB</scope></search><sort><creationdate>20220708</creationdate><title>Corn pest area detection method combining context perception and multi-scale mixed attention</title><author>ZHANG JUNQING ; ZHANG JIE ; SHENG JIAJIA ; XIE CHENGJUN ; LI RUI ; PEI HAOTIAN ; HUANG HE ; ZHANG WEI ; SUN YOUQIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114724031A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG JUNQING</creatorcontrib><creatorcontrib>ZHANG JIE</creatorcontrib><creatorcontrib>SHENG JIAJIA</creatorcontrib><creatorcontrib>XIE CHENGJUN</creatorcontrib><creatorcontrib>LI RUI</creatorcontrib><creatorcontrib>PEI HAOTIAN</creatorcontrib><creatorcontrib>HUANG HE</creatorcontrib><creatorcontrib>ZHANG WEI</creatorcontrib><creatorcontrib>SUN YOUQIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG JUNQING</au><au>ZHANG JIE</au><au>SHENG JIAJIA</au><au>XIE CHENGJUN</au><au>LI RUI</au><au>PEI HAOTIAN</au><au>HUANG HE</au><au>ZHANG WEI</au><au>SUN YOUQIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Corn pest area detection method combining context perception and multi-scale mixed attention</title><date>2022-07-08</date><risdate>2022</risdate><abstract>The invention relates to a corn pest area detection method combining context perception and multi-scale mixed attention. The method comprises the following steps: establishing a training sample set; constructing a corn insect pest area detection model: constructing a basic insect pest area detection model, and improving a feature aggregation network in the basic insect pest area detection model by adopting a multi-scale mixed attention module and a context sensing module to obtain the corn insect pest area detection model; training a corn pest area detection model; and insect pest area detection: inputting a to-be-detected sample into the corn insect pest area detection model, generating positioning information of insect pest areas in the to-be-detected sample, and counting the number of the insect pest areas. According to the invention, through the context sensing module, multi-scale context features are introduced to a small target insect pest area to strengthen the expression ability of target features, th</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114724031A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Corn pest area detection method combining context perception and multi-scale mixed attention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20JUNQING&rft.date=2022-07-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114724031A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true