Topological graph scene recognition method and device based on density filtering and landmark saliency

The invention discloses a topological graph scene recognition method and device based on density filtering and landmark saliency, effectively solves the scene recognition problem under the view angle change, extracts SIFT key points from an obtained landmark on the basis of a target detection algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: QIN CAO, ZHANG YUNZHOU, YANG FEI, LIU YINGDA, DU CHENGYAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator QIN CAO
ZHANG YUNZHOU
YANG FEI
LIU YINGDA
DU CHENGYAO
description The invention discloses a topological graph scene recognition method and device based on density filtering and landmark saliency, effectively solves the scene recognition problem under the view angle change, extracts SIFT key points from an obtained landmark on the basis of a target detection algorithm, makes full use of the characteristic that the SIFT key points have robustness to the view angle change, and improves the scene recognition efficiency. The method comprises the following steps of: acquiring landmarks with view angle invariance by adopting a density filtering algorithm, then performing cross authentication on depth global descriptors of the landmarks with view angle invariance in a query frame and a reference frame and comparing shape scores of the landmarks to obtain mutually matched landmarks in the two frames, and considering that the extracted landmarks only represent a small part of an image; some landmarks with low identification degree may cause confusion, thereby generating negative effe
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114708482A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114708482A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114708482A3</originalsourceid><addsrcrecordid>eNqNjTEKwkAQRdNYiHqH8QCC0YBpJShWVunDuDvZDG5mlt1FyO2N4gFs_iveg78s-laDenVs0IOLGAZIhoQgklEnnFkFRsqDWkCxYOnFhuCBiSzMypIkzhP07DNFFvet_Dwjxick9ExipnWx6NEn2vy4KrbXS9vcdhS0oxTw85m75l6W1WlfV_XhfPyneQOPOz_K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Topological graph scene recognition method and device based on density filtering and landmark saliency</title><source>esp@cenet</source><creator>QIN CAO ; ZHANG YUNZHOU ; YANG FEI ; LIU YINGDA ; DU CHENGYAO</creator><creatorcontrib>QIN CAO ; ZHANG YUNZHOU ; YANG FEI ; LIU YINGDA ; DU CHENGYAO</creatorcontrib><description>The invention discloses a topological graph scene recognition method and device based on density filtering and landmark saliency, effectively solves the scene recognition problem under the view angle change, extracts SIFT key points from an obtained landmark on the basis of a target detection algorithm, makes full use of the characteristic that the SIFT key points have robustness to the view angle change, and improves the scene recognition efficiency. The method comprises the following steps of: acquiring landmarks with view angle invariance by adopting a density filtering algorithm, then performing cross authentication on depth global descriptors of the landmarks with view angle invariance in a query frame and a reference frame and comparing shape scores of the landmarks to obtain mutually matched landmarks in the two frames, and considering that the extracted landmarks only represent a small part of an image; some landmarks with low identification degree may cause confusion, thereby generating negative effe</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220705&amp;DB=EPODOC&amp;CC=CN&amp;NR=114708482A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220705&amp;DB=EPODOC&amp;CC=CN&amp;NR=114708482A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>QIN CAO</creatorcontrib><creatorcontrib>ZHANG YUNZHOU</creatorcontrib><creatorcontrib>YANG FEI</creatorcontrib><creatorcontrib>LIU YINGDA</creatorcontrib><creatorcontrib>DU CHENGYAO</creatorcontrib><title>Topological graph scene recognition method and device based on density filtering and landmark saliency</title><description>The invention discloses a topological graph scene recognition method and device based on density filtering and landmark saliency, effectively solves the scene recognition problem under the view angle change, extracts SIFT key points from an obtained landmark on the basis of a target detection algorithm, makes full use of the characteristic that the SIFT key points have robustness to the view angle change, and improves the scene recognition efficiency. The method comprises the following steps of: acquiring landmarks with view angle invariance by adopting a density filtering algorithm, then performing cross authentication on depth global descriptors of the landmarks with view angle invariance in a query frame and a reference frame and comparing shape scores of the landmarks to obtain mutually matched landmarks in the two frames, and considering that the extracted landmarks only represent a small part of an image; some landmarks with low identification degree may cause confusion, thereby generating negative effe</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEKwkAQRdNYiHqH8QCC0YBpJShWVunDuDvZDG5mlt1FyO2N4gFs_iveg78s-laDenVs0IOLGAZIhoQgklEnnFkFRsqDWkCxYOnFhuCBiSzMypIkzhP07DNFFvet_Dwjxick9ExipnWx6NEn2vy4KrbXS9vcdhS0oxTw85m75l6W1WlfV_XhfPyneQOPOz_K</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>QIN CAO</creator><creator>ZHANG YUNZHOU</creator><creator>YANG FEI</creator><creator>LIU YINGDA</creator><creator>DU CHENGYAO</creator><scope>EVB</scope></search><sort><creationdate>20220705</creationdate><title>Topological graph scene recognition method and device based on density filtering and landmark saliency</title><author>QIN CAO ; ZHANG YUNZHOU ; YANG FEI ; LIU YINGDA ; DU CHENGYAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114708482A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>QIN CAO</creatorcontrib><creatorcontrib>ZHANG YUNZHOU</creatorcontrib><creatorcontrib>YANG FEI</creatorcontrib><creatorcontrib>LIU YINGDA</creatorcontrib><creatorcontrib>DU CHENGYAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>QIN CAO</au><au>ZHANG YUNZHOU</au><au>YANG FEI</au><au>LIU YINGDA</au><au>DU CHENGYAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Topological graph scene recognition method and device based on density filtering and landmark saliency</title><date>2022-07-05</date><risdate>2022</risdate><abstract>The invention discloses a topological graph scene recognition method and device based on density filtering and landmark saliency, effectively solves the scene recognition problem under the view angle change, extracts SIFT key points from an obtained landmark on the basis of a target detection algorithm, makes full use of the characteristic that the SIFT key points have robustness to the view angle change, and improves the scene recognition efficiency. The method comprises the following steps of: acquiring landmarks with view angle invariance by adopting a density filtering algorithm, then performing cross authentication on depth global descriptors of the landmarks with view angle invariance in a query frame and a reference frame and comparing shape scores of the landmarks to obtain mutually matched landmarks in the two frames, and considering that the extracted landmarks only represent a small part of an image; some landmarks with low identification degree may cause confusion, thereby generating negative effe</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114708482A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Topological graph scene recognition method and device based on density filtering and landmark saliency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=QIN%20CAO&rft.date=2022-07-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114708482A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true