Zero sample event extraction system and method based on comparative learning and data enhancement

The invention discloses a zero sample event extraction system and method based on comparative learning and data enhancement in the technical field of natural language processing, and the method comprises the steps: obtaining a data set, and dividing the data set into known events and unknown events;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: QIU ZHENYU, JI TAO, KONG WEIJING, ZHOU YIHANG, JI WENDI, ZHANG SENHUI, WU YUANBIN, ZHU DEWEI, ZHU BING, WANG XIAOLING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator QIU ZHENYU
JI TAO
KONG WEIJING
ZHOU YIHANG
JI WENDI
ZHANG SENHUI
WU YUANBIN
ZHU DEWEI
ZHU BING
WANG XIAOLING
description The invention discloses a zero sample event extraction system and method based on comparative learning and data enhancement in the technical field of natural language processing, and the method comprises the steps: obtaining a data set, and dividing the data set into known events and unknown events; rewriting the event description text of the unknown event; forming a positive and negative sample pair by the known event, the unknown event and the unknown event subjected to event description rewriting; inputting the positive and negative sample pairs into an event encoder to generate corresponding feature vectors; after a comparison loss function value is calculated based on the feature vector, model parameters in the event encoder are updated through gradient return; and performing classification and clustering based on the updated feature vector input output by the event encoder. According to the method, by comparing similar and heterogeneous samples, the annotation data of the known event and the unannotated
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114707483A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114707483A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114707483A3</originalsourceid><addsrcrecordid>eNqNjLEKwkAQBdNYiPoP6wcIhgRiG4JiZWVlE9a7pznI7R13S9C_N4gfYDXFDLMs-IYUKLOPIwgTRAkvTWzUBaH8zgpPLJY8dAiW7pxhaVYm-MiJ1U2gEZzEyfMbWlYmyMBi4Offulg8eMzY_LgqtqfjtTvvEEOPHNlAoH13Kcu62Tf1oWqrf5oPKZI95g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Zero sample event extraction system and method based on comparative learning and data enhancement</title><source>esp@cenet</source><creator>QIU ZHENYU ; JI TAO ; KONG WEIJING ; ZHOU YIHANG ; JI WENDI ; ZHANG SENHUI ; WU YUANBIN ; ZHU DEWEI ; ZHU BING ; WANG XIAOLING</creator><creatorcontrib>QIU ZHENYU ; JI TAO ; KONG WEIJING ; ZHOU YIHANG ; JI WENDI ; ZHANG SENHUI ; WU YUANBIN ; ZHU DEWEI ; ZHU BING ; WANG XIAOLING</creatorcontrib><description>The invention discloses a zero sample event extraction system and method based on comparative learning and data enhancement in the technical field of natural language processing, and the method comprises the steps: obtaining a data set, and dividing the data set into known events and unknown events; rewriting the event description text of the unknown event; forming a positive and negative sample pair by the known event, the unknown event and the unknown event subjected to event description rewriting; inputting the positive and negative sample pairs into an event encoder to generate corresponding feature vectors; after a comparison loss function value is calculated based on the feature vector, model parameters in the event encoder are updated through gradient return; and performing classification and clustering based on the updated feature vector input output by the event encoder. According to the method, by comparing similar and heterogeneous samples, the annotation data of the known event and the unannotated</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220705&amp;DB=EPODOC&amp;CC=CN&amp;NR=114707483A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220705&amp;DB=EPODOC&amp;CC=CN&amp;NR=114707483A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>QIU ZHENYU</creatorcontrib><creatorcontrib>JI TAO</creatorcontrib><creatorcontrib>KONG WEIJING</creatorcontrib><creatorcontrib>ZHOU YIHANG</creatorcontrib><creatorcontrib>JI WENDI</creatorcontrib><creatorcontrib>ZHANG SENHUI</creatorcontrib><creatorcontrib>WU YUANBIN</creatorcontrib><creatorcontrib>ZHU DEWEI</creatorcontrib><creatorcontrib>ZHU BING</creatorcontrib><creatorcontrib>WANG XIAOLING</creatorcontrib><title>Zero sample event extraction system and method based on comparative learning and data enhancement</title><description>The invention discloses a zero sample event extraction system and method based on comparative learning and data enhancement in the technical field of natural language processing, and the method comprises the steps: obtaining a data set, and dividing the data set into known events and unknown events; rewriting the event description text of the unknown event; forming a positive and negative sample pair by the known event, the unknown event and the unknown event subjected to event description rewriting; inputting the positive and negative sample pairs into an event encoder to generate corresponding feature vectors; after a comparison loss function value is calculated based on the feature vector, model parameters in the event encoder are updated through gradient return; and performing classification and clustering based on the updated feature vector input output by the event encoder. According to the method, by comparing similar and heterogeneous samples, the annotation data of the known event and the unannotated</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwkAQBdNYiPoP6wcIhgRiG4JiZWVlE9a7pznI7R13S9C_N4gfYDXFDLMs-IYUKLOPIwgTRAkvTWzUBaH8zgpPLJY8dAiW7pxhaVYm-MiJ1U2gEZzEyfMbWlYmyMBi4Offulg8eMzY_LgqtqfjtTvvEEOPHNlAoH13Kcu62Tf1oWqrf5oPKZI95g</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>QIU ZHENYU</creator><creator>JI TAO</creator><creator>KONG WEIJING</creator><creator>ZHOU YIHANG</creator><creator>JI WENDI</creator><creator>ZHANG SENHUI</creator><creator>WU YUANBIN</creator><creator>ZHU DEWEI</creator><creator>ZHU BING</creator><creator>WANG XIAOLING</creator><scope>EVB</scope></search><sort><creationdate>20220705</creationdate><title>Zero sample event extraction system and method based on comparative learning and data enhancement</title><author>QIU ZHENYU ; JI TAO ; KONG WEIJING ; ZHOU YIHANG ; JI WENDI ; ZHANG SENHUI ; WU YUANBIN ; ZHU DEWEI ; ZHU BING ; WANG XIAOLING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114707483A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>QIU ZHENYU</creatorcontrib><creatorcontrib>JI TAO</creatorcontrib><creatorcontrib>KONG WEIJING</creatorcontrib><creatorcontrib>ZHOU YIHANG</creatorcontrib><creatorcontrib>JI WENDI</creatorcontrib><creatorcontrib>ZHANG SENHUI</creatorcontrib><creatorcontrib>WU YUANBIN</creatorcontrib><creatorcontrib>ZHU DEWEI</creatorcontrib><creatorcontrib>ZHU BING</creatorcontrib><creatorcontrib>WANG XIAOLING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>QIU ZHENYU</au><au>JI TAO</au><au>KONG WEIJING</au><au>ZHOU YIHANG</au><au>JI WENDI</au><au>ZHANG SENHUI</au><au>WU YUANBIN</au><au>ZHU DEWEI</au><au>ZHU BING</au><au>WANG XIAOLING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Zero sample event extraction system and method based on comparative learning and data enhancement</title><date>2022-07-05</date><risdate>2022</risdate><abstract>The invention discloses a zero sample event extraction system and method based on comparative learning and data enhancement in the technical field of natural language processing, and the method comprises the steps: obtaining a data set, and dividing the data set into known events and unknown events; rewriting the event description text of the unknown event; forming a positive and negative sample pair by the known event, the unknown event and the unknown event subjected to event description rewriting; inputting the positive and negative sample pairs into an event encoder to generate corresponding feature vectors; after a comparison loss function value is calculated based on the feature vector, model parameters in the event encoder are updated through gradient return; and performing classification and clustering based on the updated feature vector input output by the event encoder. According to the method, by comparing similar and heterogeneous samples, the annotation data of the known event and the unannotated</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114707483A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Zero sample event extraction system and method based on comparative learning and data enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=QIU%20ZHENYU&rft.date=2022-07-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114707483A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true