Quantization method based on neural network model and related equipment thereof

The invention discloses a model quantification method based on a neural network and related equipment thereof, and belongs to the field of artificial intelligence. The method comprises the following steps: acquiring a neural network graph structure, wherein the neural network graph structure compris...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIAN SHUO, LIANG XUE, SUN FANGXUAN, ZHOU JUN, ZHANG XIAOWEN, CHANG JING, WANG CHENXI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIAN SHUO
LIANG XUE
SUN FANGXUAN
ZHOU JUN
ZHANG XIAOWEN
CHANG JING
WANG CHENXI
description The invention discloses a model quantification method based on a neural network and related equipment thereof, and belongs to the field of artificial intelligence. The method comprises the following steps: acquiring a neural network graph structure, wherein the neural network graph structure comprises a plurality of operation nodes; inserting a plurality of quantization nodes in the neural network graph structure to obtain a quantization model graph structure; the quantitative model graph structure is trained according to sample data to obtain a quantitative model, and the size of the quantitative model is smaller than that of the neural network graph structure; wherein the training comprises the step of quantizing the input data of each quantization node by utilizing each quantization node in the plurality of quantization nodes to obtain the output data of each quantization node. 一种基于神经网络的模型量化方法及其相关设备,用于人工智能领域。该方法包括:获取神经网络图结构,所述神经网络图结构包括多个运算节点;在所述神经网络图结构中插入多个量化节点,以得到量化模型图结构;根据样本数据对所述量化模型图结构进行训练,以得到量化模型,所述量化模
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114698394A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114698394A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114698394A3</originalsourceid><addsrcrecordid>eNqNjD0KwkAUBtNYiHqH5wEsQoKYUoJipQj24el-IYv75-5bBE_vFh7AahgYZl5drpmd6A-L9o4sZPKK7pygqLhDjmwK5O3jk6xXMMROUYRhKQ1eWQcLJyQTIvy4rGYjm4TVj4tqfTzc-tMGwQ9IgR8ot6E_13W77XZN1-6bf5ovkFM3bw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Quantization method based on neural network model and related equipment thereof</title><source>esp@cenet</source><creator>LIAN SHUO ; LIANG XUE ; SUN FANGXUAN ; ZHOU JUN ; ZHANG XIAOWEN ; CHANG JING ; WANG CHENXI</creator><creatorcontrib>LIAN SHUO ; LIANG XUE ; SUN FANGXUAN ; ZHOU JUN ; ZHANG XIAOWEN ; CHANG JING ; WANG CHENXI</creatorcontrib><description>The invention discloses a model quantification method based on a neural network and related equipment thereof, and belongs to the field of artificial intelligence. The method comprises the following steps: acquiring a neural network graph structure, wherein the neural network graph structure comprises a plurality of operation nodes; inserting a plurality of quantization nodes in the neural network graph structure to obtain a quantization model graph structure; the quantitative model graph structure is trained according to sample data to obtain a quantitative model, and the size of the quantitative model is smaller than that of the neural network graph structure; wherein the training comprises the step of quantizing the input data of each quantization node by utilizing each quantization node in the plurality of quantization nodes to obtain the output data of each quantization node. 一种基于神经网络的模型量化方法及其相关设备,用于人工智能领域。该方法包括:获取神经网络图结构,所述神经网络图结构包括多个运算节点;在所述神经网络图结构中插入多个量化节点,以得到量化模型图结构;根据样本数据对所述量化模型图结构进行训练,以得到量化模型,所述量化模</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220701&amp;DB=EPODOC&amp;CC=CN&amp;NR=114698394A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220701&amp;DB=EPODOC&amp;CC=CN&amp;NR=114698394A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIAN SHUO</creatorcontrib><creatorcontrib>LIANG XUE</creatorcontrib><creatorcontrib>SUN FANGXUAN</creatorcontrib><creatorcontrib>ZHOU JUN</creatorcontrib><creatorcontrib>ZHANG XIAOWEN</creatorcontrib><creatorcontrib>CHANG JING</creatorcontrib><creatorcontrib>WANG CHENXI</creatorcontrib><title>Quantization method based on neural network model and related equipment thereof</title><description>The invention discloses a model quantification method based on a neural network and related equipment thereof, and belongs to the field of artificial intelligence. The method comprises the following steps: acquiring a neural network graph structure, wherein the neural network graph structure comprises a plurality of operation nodes; inserting a plurality of quantization nodes in the neural network graph structure to obtain a quantization model graph structure; the quantitative model graph structure is trained according to sample data to obtain a quantitative model, and the size of the quantitative model is smaller than that of the neural network graph structure; wherein the training comprises the step of quantizing the input data of each quantization node by utilizing each quantization node in the plurality of quantization nodes to obtain the output data of each quantization node. 一种基于神经网络的模型量化方法及其相关设备,用于人工智能领域。该方法包括:获取神经网络图结构,所述神经网络图结构包括多个运算节点;在所述神经网络图结构中插入多个量化节点,以得到量化模型图结构;根据样本数据对所述量化模型图结构进行训练,以得到量化模型,所述量化模</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjD0KwkAUBtNYiHqH5wEsQoKYUoJipQj24el-IYv75-5bBE_vFh7AahgYZl5drpmd6A-L9o4sZPKK7pygqLhDjmwK5O3jk6xXMMROUYRhKQ1eWQcLJyQTIvy4rGYjm4TVj4tqfTzc-tMGwQ9IgR8ot6E_13W77XZN1-6bf5ovkFM3bw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>LIAN SHUO</creator><creator>LIANG XUE</creator><creator>SUN FANGXUAN</creator><creator>ZHOU JUN</creator><creator>ZHANG XIAOWEN</creator><creator>CHANG JING</creator><creator>WANG CHENXI</creator><scope>EVB</scope></search><sort><creationdate>20220701</creationdate><title>Quantization method based on neural network model and related equipment thereof</title><author>LIAN SHUO ; LIANG XUE ; SUN FANGXUAN ; ZHOU JUN ; ZHANG XIAOWEN ; CHANG JING ; WANG CHENXI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114698394A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIAN SHUO</creatorcontrib><creatorcontrib>LIANG XUE</creatorcontrib><creatorcontrib>SUN FANGXUAN</creatorcontrib><creatorcontrib>ZHOU JUN</creatorcontrib><creatorcontrib>ZHANG XIAOWEN</creatorcontrib><creatorcontrib>CHANG JING</creatorcontrib><creatorcontrib>WANG CHENXI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIAN SHUO</au><au>LIANG XUE</au><au>SUN FANGXUAN</au><au>ZHOU JUN</au><au>ZHANG XIAOWEN</au><au>CHANG JING</au><au>WANG CHENXI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Quantization method based on neural network model and related equipment thereof</title><date>2022-07-01</date><risdate>2022</risdate><abstract>The invention discloses a model quantification method based on a neural network and related equipment thereof, and belongs to the field of artificial intelligence. The method comprises the following steps: acquiring a neural network graph structure, wherein the neural network graph structure comprises a plurality of operation nodes; inserting a plurality of quantization nodes in the neural network graph structure to obtain a quantization model graph structure; the quantitative model graph structure is trained according to sample data to obtain a quantitative model, and the size of the quantitative model is smaller than that of the neural network graph structure; wherein the training comprises the step of quantizing the input data of each quantization node by utilizing each quantization node in the plurality of quantization nodes to obtain the output data of each quantization node. 一种基于神经网络的模型量化方法及其相关设备,用于人工智能领域。该方法包括:获取神经网络图结构,所述神经网络图结构包括多个运算节点;在所述神经网络图结构中插入多个量化节点,以得到量化模型图结构;根据样本数据对所述量化模型图结构进行训练,以得到量化模型,所述量化模</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114698394A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Quantization method based on neural network model and related equipment thereof
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIAN%20SHUO&rft.date=2022-07-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114698394A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true