Method for positioning scalp electroencephalogram epilepsy region based on artificial intelligence

The invention relates to the field of artificial intelligence, in particular to a scalp electroencephalogram epilepsy region positioning method based on artificial intelligence. Comprising the steps that historical electroencephalogram waveform images are collected and compressed, and a sparse codin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HAN XIONG, HAN JIUYAN, ZHENG MEIQIONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HAN XIONG
HAN JIUYAN
ZHENG MEIQIONG
description The invention relates to the field of artificial intelligence, in particular to a scalp electroencephalogram epilepsy region positioning method based on artificial intelligence. Comprising the steps that historical electroencephalogram waveform images are collected and compressed, and a sparse coding image of each historical waveform image is obtained; a neural network is used for training, and the LOSS function historical value of each sparse coding image is obtained; calculating a mean value of historical values of the LOSS function of the sparse coding image, and obtaining an oscillation sparse coding image; calculating the similarity between the oscillation sparse coding image and each sparse coding image, and obtaining an associated sparse coding image; and reconstructing an LOSS function of the neural network, and outputting a labeled image. According to the technical means provided by the invention, the LOSS function of the neural network is re-constructed, so that the recognition accuracy of the neura
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114677379A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114677379A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114677379A3</originalsourceid><addsrcrecordid>eNqNizEKwkAQRdNYiHqH8QAWIWKwlKDYaGUfJuvPZmDcWXa38fZG8ABW7xXvLavhhjLZk0ZLFC1LEQsSPGXHGgkKV5IhOMSJ1XziFyGKIuY3Jfi5poEznjQLpyKjOGElCQWq4r_nulqMrBmbH1fV9nJ-dNcdovXIkR0CSt_d63p_aNumPZ6af5oP3sY_Kw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for positioning scalp electroencephalogram epilepsy region based on artificial intelligence</title><source>esp@cenet</source><creator>HAN XIONG ; HAN JIUYAN ; ZHENG MEIQIONG</creator><creatorcontrib>HAN XIONG ; HAN JIUYAN ; ZHENG MEIQIONG</creatorcontrib><description>The invention relates to the field of artificial intelligence, in particular to a scalp electroencephalogram epilepsy region positioning method based on artificial intelligence. Comprising the steps that historical electroencephalogram waveform images are collected and compressed, and a sparse coding image of each historical waveform image is obtained; a neural network is used for training, and the LOSS function historical value of each sparse coding image is obtained; calculating a mean value of historical values of the LOSS function of the sparse coding image, and obtaining an oscillation sparse coding image; calculating the similarity between the oscillation sparse coding image and each sparse coding image, and obtaining an associated sparse coding image; and reconstructing an LOSS function of the neural network, and outputting a labeled image. According to the technical means provided by the invention, the LOSS function of the neural network is re-constructed, so that the recognition accuracy of the neura</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; HANDLING RECORD CARRIERS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SURGERY</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220628&amp;DB=EPODOC&amp;CC=CN&amp;NR=114677379A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25573,76557</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220628&amp;DB=EPODOC&amp;CC=CN&amp;NR=114677379A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HAN XIONG</creatorcontrib><creatorcontrib>HAN JIUYAN</creatorcontrib><creatorcontrib>ZHENG MEIQIONG</creatorcontrib><title>Method for positioning scalp electroencephalogram epilepsy region based on artificial intelligence</title><description>The invention relates to the field of artificial intelligence, in particular to a scalp electroencephalogram epilepsy region positioning method based on artificial intelligence. Comprising the steps that historical electroencephalogram waveform images are collected and compressed, and a sparse coding image of each historical waveform image is obtained; a neural network is used for training, and the LOSS function historical value of each sparse coding image is obtained; calculating a mean value of historical values of the LOSS function of the sparse coding image, and obtaining an oscillation sparse coding image; calculating the similarity between the oscillation sparse coding image and each sparse coding image, and obtaining an associated sparse coding image; and reconstructing an LOSS function of the neural network, and outputting a labeled image. According to the technical means provided by the invention, the LOSS function of the neural network is re-constructed, so that the recognition accuracy of the neura</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HANDLING RECORD CARRIERS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEKwkAQRdNYiHqH8QAWIWKwlKDYaGUfJuvPZmDcWXa38fZG8ABW7xXvLavhhjLZk0ZLFC1LEQsSPGXHGgkKV5IhOMSJ1XziFyGKIuY3Jfi5poEznjQLpyKjOGElCQWq4r_nulqMrBmbH1fV9nJ-dNcdovXIkR0CSt_d63p_aNumPZ6af5oP3sY_Kw</recordid><startdate>20220628</startdate><enddate>20220628</enddate><creator>HAN XIONG</creator><creator>HAN JIUYAN</creator><creator>ZHENG MEIQIONG</creator><scope>EVB</scope></search><sort><creationdate>20220628</creationdate><title>Method for positioning scalp electroencephalogram epilepsy region based on artificial intelligence</title><author>HAN XIONG ; HAN JIUYAN ; ZHENG MEIQIONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114677379A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HANDLING RECORD CARRIERS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>HAN XIONG</creatorcontrib><creatorcontrib>HAN JIUYAN</creatorcontrib><creatorcontrib>ZHENG MEIQIONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HAN XIONG</au><au>HAN JIUYAN</au><au>ZHENG MEIQIONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for positioning scalp electroencephalogram epilepsy region based on artificial intelligence</title><date>2022-06-28</date><risdate>2022</risdate><abstract>The invention relates to the field of artificial intelligence, in particular to a scalp electroencephalogram epilepsy region positioning method based on artificial intelligence. Comprising the steps that historical electroencephalogram waveform images are collected and compressed, and a sparse coding image of each historical waveform image is obtained; a neural network is used for training, and the LOSS function historical value of each sparse coding image is obtained; calculating a mean value of historical values of the LOSS function of the sparse coding image, and obtaining an oscillation sparse coding image; calculating the similarity between the oscillation sparse coding image and each sparse coding image, and obtaining an associated sparse coding image; and reconstructing an LOSS function of the neural network, and outputting a labeled image. According to the technical means provided by the invention, the LOSS function of the neural network is re-constructed, so that the recognition accuracy of the neura</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114677379A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DIAGNOSIS
HANDLING RECORD CARRIERS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
MEDICAL OR VETERINARY SCIENCE
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SURGERY
title Method for positioning scalp electroencephalogram epilepsy region based on artificial intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T07%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HAN%20XIONG&rft.date=2022-06-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114677379A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true