5G traffic identification method and device based on machine learning

The invention discloses a 5G traffic identification method and device based on machine learning. The method comprises the following steps: acquiring to-be-tested pcap format data and to-be-tested IDX format data of to-be-tested traffic data; inputting the to-be-tested IDX format data and the to-be-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUO SHOUKUN, FANG LIANG, LI FENGHUA, LU XIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUO SHOUKUN
FANG LIANG
LI FENGHUA
LU XIANG
description The invention discloses a 5G traffic identification method and device based on machine learning. The method comprises the following steps: acquiring to-be-tested pcap format data and to-be-tested IDX format data of to-be-tested traffic data; inputting the to-be-tested IDX format data and the to-be-tested pcap format data into the supervised learning model and the representation learning model respectively to obtain a supervised learning recognition result and a representation learning recognition result; and obtaining a traffic identification result according to the supervised learning identification result and the representation learning identification result. By analyzing the Pcap file, the network traffic can be classified and identified by using the deep learning model, so that the traditional supervised learning is combined with the unsupervised representation learning, and the identification accuracy is improved. 本发明公开一种基于机器学习的5G流量识别方法及装置,包括获取待测流量数据的待测pcap格式数据及待测IDX格式数据;将待测IDX格式数据与待测pcap格式数据分别输入监督学习模型与表
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114666282A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114666282A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114666282A3</originalsourceid><addsrcrecordid>eNqNijEKwkAQRbexEPUO4wEsEnWxlRC1srIP4-5fMxBnQ3bw_Cp4AKv34L25a_dnsolTkkASoSYfY5Os9IT1ORJrpIiXBNCdCyJ9E4deFDSAJxV9LN0s8VCw-nHh1qf21lw2GHOHMnKAwrrmWlU77319qI_bf543ob0yng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>5G traffic identification method and device based on machine learning</title><source>esp@cenet</source><creator>GUO SHOUKUN ; FANG LIANG ; LI FENGHUA ; LU XIANG</creator><creatorcontrib>GUO SHOUKUN ; FANG LIANG ; LI FENGHUA ; LU XIANG</creatorcontrib><description>The invention discloses a 5G traffic identification method and device based on machine learning. The method comprises the following steps: acquiring to-be-tested pcap format data and to-be-tested IDX format data of to-be-tested traffic data; inputting the to-be-tested IDX format data and the to-be-tested pcap format data into the supervised learning model and the representation learning model respectively to obtain a supervised learning recognition result and a representation learning recognition result; and obtaining a traffic identification result according to the supervised learning identification result and the representation learning identification result. By analyzing the Pcap file, the network traffic can be classified and identified by using the deep learning model, so that the traditional supervised learning is combined with the unsupervised representation learning, and the identification accuracy is improved. 本发明公开一种基于机器学习的5G流量识别方法及装置,包括获取待测流量数据的待测pcap格式数据及待测IDX格式数据;将待测IDX格式数据与待测pcap格式数据分别输入监督学习模型与表</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220624&amp;DB=EPODOC&amp;CC=CN&amp;NR=114666282A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25553,76306</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220624&amp;DB=EPODOC&amp;CC=CN&amp;NR=114666282A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUO SHOUKUN</creatorcontrib><creatorcontrib>FANG LIANG</creatorcontrib><creatorcontrib>LI FENGHUA</creatorcontrib><creatorcontrib>LU XIANG</creatorcontrib><title>5G traffic identification method and device based on machine learning</title><description>The invention discloses a 5G traffic identification method and device based on machine learning. The method comprises the following steps: acquiring to-be-tested pcap format data and to-be-tested IDX format data of to-be-tested traffic data; inputting the to-be-tested IDX format data and the to-be-tested pcap format data into the supervised learning model and the representation learning model respectively to obtain a supervised learning recognition result and a representation learning recognition result; and obtaining a traffic identification result according to the supervised learning identification result and the representation learning identification result. By analyzing the Pcap file, the network traffic can be classified and identified by using the deep learning model, so that the traditional supervised learning is combined with the unsupervised representation learning, and the identification accuracy is improved. 本发明公开一种基于机器学习的5G流量识别方法及装置,包括获取待测流量数据的待测pcap格式数据及待测IDX格式数据;将待测IDX格式数据与待测pcap格式数据分别输入监督学习模型与表</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQRbexEPUO4wEsEnWxlRC1srIP4-5fMxBnQ3bw_Cp4AKv34L25a_dnsolTkkASoSYfY5Os9IT1ORJrpIiXBNCdCyJ9E4deFDSAJxV9LN0s8VCw-nHh1qf21lw2GHOHMnKAwrrmWlU77319qI_bf543ob0yng</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>GUO SHOUKUN</creator><creator>FANG LIANG</creator><creator>LI FENGHUA</creator><creator>LU XIANG</creator><scope>EVB</scope></search><sort><creationdate>20220624</creationdate><title>5G traffic identification method and device based on machine learning</title><author>GUO SHOUKUN ; FANG LIANG ; LI FENGHUA ; LU XIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114666282A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>GUO SHOUKUN</creatorcontrib><creatorcontrib>FANG LIANG</creatorcontrib><creatorcontrib>LI FENGHUA</creatorcontrib><creatorcontrib>LU XIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUO SHOUKUN</au><au>FANG LIANG</au><au>LI FENGHUA</au><au>LU XIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>5G traffic identification method and device based on machine learning</title><date>2022-06-24</date><risdate>2022</risdate><abstract>The invention discloses a 5G traffic identification method and device based on machine learning. The method comprises the following steps: acquiring to-be-tested pcap format data and to-be-tested IDX format data of to-be-tested traffic data; inputting the to-be-tested IDX format data and the to-be-tested pcap format data into the supervised learning model and the representation learning model respectively to obtain a supervised learning recognition result and a representation learning recognition result; and obtaining a traffic identification result according to the supervised learning identification result and the representation learning identification result. By analyzing the Pcap file, the network traffic can be classified and identified by using the deep learning model, so that the traditional supervised learning is combined with the unsupervised representation learning, and the identification accuracy is improved. 本发明公开一种基于机器学习的5G流量识别方法及装置,包括获取待测流量数据的待测pcap格式数据及待测IDX格式数据;将待测IDX格式数据与待测pcap格式数据分别输入监督学习模型与表</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114666282A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title 5G traffic identification method and device based on machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUO%20SHOUKUN&rft.date=2022-06-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114666282A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true