Infrared holographic noise suppression method based on deep learning

The invention discloses an infrared holographic noise suppression method based on deep learning, and the method comprises the steps: collecting an infrared holographic image as a training sample, taking a phase diagram and an intensity diagram of the infrared holographic image as samples, setting tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHAO DANLU, CHEN QIANGSHEN, ZHAO HANG, ZHANG YUNHAO, KANG WENJIE, YE FEI, XI JIAMIN, ZHANG YONG'AN, LI YAXUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHAO DANLU
CHEN QIANGSHEN
ZHAO HANG
ZHANG YUNHAO
KANG WENJIE
YE FEI
XI JIAMIN
ZHANG YONG'AN
LI YAXUAN
description The invention discloses an infrared holographic noise suppression method based on deep learning, and the method comprises the steps: collecting an infrared holographic image as a training sample, taking a phase diagram and an intensity diagram of the infrared holographic image as samples, setting training parameters of a neural network according to the parameters of the intensity diagram sample, extracting the corresponding noise features, and carrying out the recognition of the noise features. The method comprises the following steps of: performing noise suppression on noise features by using a convolutional neural network to establish a model, performing Fourier transform (1-FFT) reconstruction on an image obtained by a neural convolutional network model to obtain an infrared hologram subjected to deep learning noise reduction, and applying the method to an infrared holographic optical path to effectively suppress the noise of the infrared hologram in real time, so as to improve the resolution of the infrar
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114663419A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114663419A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114663419A3</originalsourceid><addsrcrecordid>eNrjZHDxzEsrSixKTVHIyM_JTy9KLMjITFbIy88sTlUoLi0oKEotLs7Mz1PITS3JyE9RSEosBioF8lNSUwsUclITi_Iy89J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoYmZmbGJoaWjMTFqAOSGMyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Infrared holographic noise suppression method based on deep learning</title><source>esp@cenet</source><creator>ZHAO DANLU ; CHEN QIANGSHEN ; ZHAO HANG ; ZHANG YUNHAO ; KANG WENJIE ; YE FEI ; XI JIAMIN ; ZHANG YONG'AN ; LI YAXUAN</creator><creatorcontrib>ZHAO DANLU ; CHEN QIANGSHEN ; ZHAO HANG ; ZHANG YUNHAO ; KANG WENJIE ; YE FEI ; XI JIAMIN ; ZHANG YONG'AN ; LI YAXUAN</creatorcontrib><description>The invention discloses an infrared holographic noise suppression method based on deep learning, and the method comprises the steps: collecting an infrared holographic image as a training sample, taking a phase diagram and an intensity diagram of the infrared holographic image as samples, setting training parameters of a neural network according to the parameters of the intensity diagram sample, extracting the corresponding noise features, and carrying out the recognition of the noise features. The method comprises the following steps of: performing noise suppression on noise features by using a convolutional neural network to establish a model, performing Fourier transform (1-FFT) reconstruction on an image obtained by a neural convolutional network model to obtain an infrared hologram subjected to deep learning noise reduction, and applying the method to an infrared holographic optical path to effectively suppress the noise of the infrared hologram in real time, so as to improve the resolution of the infrar</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220624&amp;DB=EPODOC&amp;CC=CN&amp;NR=114663419A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220624&amp;DB=EPODOC&amp;CC=CN&amp;NR=114663419A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO DANLU</creatorcontrib><creatorcontrib>CHEN QIANGSHEN</creatorcontrib><creatorcontrib>ZHAO HANG</creatorcontrib><creatorcontrib>ZHANG YUNHAO</creatorcontrib><creatorcontrib>KANG WENJIE</creatorcontrib><creatorcontrib>YE FEI</creatorcontrib><creatorcontrib>XI JIAMIN</creatorcontrib><creatorcontrib>ZHANG YONG'AN</creatorcontrib><creatorcontrib>LI YAXUAN</creatorcontrib><title>Infrared holographic noise suppression method based on deep learning</title><description>The invention discloses an infrared holographic noise suppression method based on deep learning, and the method comprises the steps: collecting an infrared holographic image as a training sample, taking a phase diagram and an intensity diagram of the infrared holographic image as samples, setting training parameters of a neural network according to the parameters of the intensity diagram sample, extracting the corresponding noise features, and carrying out the recognition of the noise features. The method comprises the following steps of: performing noise suppression on noise features by using a convolutional neural network to establish a model, performing Fourier transform (1-FFT) reconstruction on an image obtained by a neural convolutional network model to obtain an infrared hologram subjected to deep learning noise reduction, and applying the method to an infrared holographic optical path to effectively suppress the noise of the infrared hologram in real time, so as to improve the resolution of the infrar</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDxzEsrSixKTVHIyM_JTy9KLMjITFbIy88sTlUoLi0oKEotLs7Mz1PITS3JyE9RSEosBioF8lNSUwsUclITi_Iy89J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoYmZmbGJoaWjMTFqAOSGMyA</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>ZHAO DANLU</creator><creator>CHEN QIANGSHEN</creator><creator>ZHAO HANG</creator><creator>ZHANG YUNHAO</creator><creator>KANG WENJIE</creator><creator>YE FEI</creator><creator>XI JIAMIN</creator><creator>ZHANG YONG'AN</creator><creator>LI YAXUAN</creator><scope>EVB</scope></search><sort><creationdate>20220624</creationdate><title>Infrared holographic noise suppression method based on deep learning</title><author>ZHAO DANLU ; CHEN QIANGSHEN ; ZHAO HANG ; ZHANG YUNHAO ; KANG WENJIE ; YE FEI ; XI JIAMIN ; ZHANG YONG'AN ; LI YAXUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114663419A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO DANLU</creatorcontrib><creatorcontrib>CHEN QIANGSHEN</creatorcontrib><creatorcontrib>ZHAO HANG</creatorcontrib><creatorcontrib>ZHANG YUNHAO</creatorcontrib><creatorcontrib>KANG WENJIE</creatorcontrib><creatorcontrib>YE FEI</creatorcontrib><creatorcontrib>XI JIAMIN</creatorcontrib><creatorcontrib>ZHANG YONG'AN</creatorcontrib><creatorcontrib>LI YAXUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO DANLU</au><au>CHEN QIANGSHEN</au><au>ZHAO HANG</au><au>ZHANG YUNHAO</au><au>KANG WENJIE</au><au>YE FEI</au><au>XI JIAMIN</au><au>ZHANG YONG'AN</au><au>LI YAXUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Infrared holographic noise suppression method based on deep learning</title><date>2022-06-24</date><risdate>2022</risdate><abstract>The invention discloses an infrared holographic noise suppression method based on deep learning, and the method comprises the steps: collecting an infrared holographic image as a training sample, taking a phase diagram and an intensity diagram of the infrared holographic image as samples, setting training parameters of a neural network according to the parameters of the intensity diagram sample, extracting the corresponding noise features, and carrying out the recognition of the noise features. The method comprises the following steps of: performing noise suppression on noise features by using a convolutional neural network to establish a model, performing Fourier transform (1-FFT) reconstruction on an image obtained by a neural convolutional network model to obtain an infrared hologram subjected to deep learning noise reduction, and applying the method to an infrared holographic optical path to effectively suppress the noise of the infrared hologram in real time, so as to improve the resolution of the infrar</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114663419A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Infrared holographic noise suppression method based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO%20DANLU&rft.date=2022-06-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114663419A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true