Infrared holographic noise suppression method based on deep learning
The invention discloses an infrared holographic noise suppression method based on deep learning, and the method comprises the steps: collecting an infrared holographic image as a training sample, taking a phase diagram and an intensity diagram of the infrared holographic image as samples, setting tr...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHAO DANLU CHEN QIANGSHEN ZHAO HANG ZHANG YUNHAO KANG WENJIE YE FEI XI JIAMIN ZHANG YONG'AN LI YAXUAN |
description | The invention discloses an infrared holographic noise suppression method based on deep learning, and the method comprises the steps: collecting an infrared holographic image as a training sample, taking a phase diagram and an intensity diagram of the infrared holographic image as samples, setting training parameters of a neural network according to the parameters of the intensity diagram sample, extracting the corresponding noise features, and carrying out the recognition of the noise features. The method comprises the following steps of: performing noise suppression on noise features by using a convolutional neural network to establish a model, performing Fourier transform (1-FFT) reconstruction on an image obtained by a neural convolutional network model to obtain an infrared hologram subjected to deep learning noise reduction, and applying the method to an infrared holographic optical path to effectively suppress the noise of the infrared hologram in real time, so as to improve the resolution of the infrar |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114663419A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114663419A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114663419A3</originalsourceid><addsrcrecordid>eNrjZHDxzEsrSixKTVHIyM_JTy9KLMjITFbIy88sTlUoLi0oKEotLs7Mz1PITS3JyE9RSEosBioF8lNSUwsUclITi_Iy89J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoYmZmbGJoaWjMTFqAOSGMyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Infrared holographic noise suppression method based on deep learning</title><source>esp@cenet</source><creator>ZHAO DANLU ; CHEN QIANGSHEN ; ZHAO HANG ; ZHANG YUNHAO ; KANG WENJIE ; YE FEI ; XI JIAMIN ; ZHANG YONG'AN ; LI YAXUAN</creator><creatorcontrib>ZHAO DANLU ; CHEN QIANGSHEN ; ZHAO HANG ; ZHANG YUNHAO ; KANG WENJIE ; YE FEI ; XI JIAMIN ; ZHANG YONG'AN ; LI YAXUAN</creatorcontrib><description>The invention discloses an infrared holographic noise suppression method based on deep learning, and the method comprises the steps: collecting an infrared holographic image as a training sample, taking a phase diagram and an intensity diagram of the infrared holographic image as samples, setting training parameters of a neural network according to the parameters of the intensity diagram sample, extracting the corresponding noise features, and carrying out the recognition of the noise features. The method comprises the following steps of: performing noise suppression on noise features by using a convolutional neural network to establish a model, performing Fourier transform (1-FFT) reconstruction on an image obtained by a neural convolutional network model to obtain an infrared hologram subjected to deep learning noise reduction, and applying the method to an infrared holographic optical path to effectively suppress the noise of the infrared hologram in real time, so as to improve the resolution of the infrar</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220624&DB=EPODOC&CC=CN&NR=114663419A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220624&DB=EPODOC&CC=CN&NR=114663419A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO DANLU</creatorcontrib><creatorcontrib>CHEN QIANGSHEN</creatorcontrib><creatorcontrib>ZHAO HANG</creatorcontrib><creatorcontrib>ZHANG YUNHAO</creatorcontrib><creatorcontrib>KANG WENJIE</creatorcontrib><creatorcontrib>YE FEI</creatorcontrib><creatorcontrib>XI JIAMIN</creatorcontrib><creatorcontrib>ZHANG YONG'AN</creatorcontrib><creatorcontrib>LI YAXUAN</creatorcontrib><title>Infrared holographic noise suppression method based on deep learning</title><description>The invention discloses an infrared holographic noise suppression method based on deep learning, and the method comprises the steps: collecting an infrared holographic image as a training sample, taking a phase diagram and an intensity diagram of the infrared holographic image as samples, setting training parameters of a neural network according to the parameters of the intensity diagram sample, extracting the corresponding noise features, and carrying out the recognition of the noise features. The method comprises the following steps of: performing noise suppression on noise features by using a convolutional neural network to establish a model, performing Fourier transform (1-FFT) reconstruction on an image obtained by a neural convolutional network model to obtain an infrared hologram subjected to deep learning noise reduction, and applying the method to an infrared holographic optical path to effectively suppress the noise of the infrared hologram in real time, so as to improve the resolution of the infrar</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDxzEsrSixKTVHIyM_JTy9KLMjITFbIy88sTlUoLi0oKEotLs7Mz1PITS3JyE9RSEosBioF8lNSUwsUclITi_Iy89J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoYmZmbGJoaWjMTFqAOSGMyA</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>ZHAO DANLU</creator><creator>CHEN QIANGSHEN</creator><creator>ZHAO HANG</creator><creator>ZHANG YUNHAO</creator><creator>KANG WENJIE</creator><creator>YE FEI</creator><creator>XI JIAMIN</creator><creator>ZHANG YONG'AN</creator><creator>LI YAXUAN</creator><scope>EVB</scope></search><sort><creationdate>20220624</creationdate><title>Infrared holographic noise suppression method based on deep learning</title><author>ZHAO DANLU ; CHEN QIANGSHEN ; ZHAO HANG ; ZHANG YUNHAO ; KANG WENJIE ; YE FEI ; XI JIAMIN ; ZHANG YONG'AN ; LI YAXUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114663419A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO DANLU</creatorcontrib><creatorcontrib>CHEN QIANGSHEN</creatorcontrib><creatorcontrib>ZHAO HANG</creatorcontrib><creatorcontrib>ZHANG YUNHAO</creatorcontrib><creatorcontrib>KANG WENJIE</creatorcontrib><creatorcontrib>YE FEI</creatorcontrib><creatorcontrib>XI JIAMIN</creatorcontrib><creatorcontrib>ZHANG YONG'AN</creatorcontrib><creatorcontrib>LI YAXUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO DANLU</au><au>CHEN QIANGSHEN</au><au>ZHAO HANG</au><au>ZHANG YUNHAO</au><au>KANG WENJIE</au><au>YE FEI</au><au>XI JIAMIN</au><au>ZHANG YONG'AN</au><au>LI YAXUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Infrared holographic noise suppression method based on deep learning</title><date>2022-06-24</date><risdate>2022</risdate><abstract>The invention discloses an infrared holographic noise suppression method based on deep learning, and the method comprises the steps: collecting an infrared holographic image as a training sample, taking a phase diagram and an intensity diagram of the infrared holographic image as samples, setting training parameters of a neural network according to the parameters of the intensity diagram sample, extracting the corresponding noise features, and carrying out the recognition of the noise features. The method comprises the following steps of: performing noise suppression on noise features by using a convolutional neural network to establish a model, performing Fourier transform (1-FFT) reconstruction on an image obtained by a neural convolutional network model to obtain an infrared hologram subjected to deep learning noise reduction, and applying the method to an infrared holographic optical path to effectively suppress the noise of the infrared hologram in real time, so as to improve the resolution of the infrar</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114663419A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Infrared holographic noise suppression method based on deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO%20DANLU&rft.date=2022-06-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114663419A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |