Engine performance prediction method adopting sample adaptive weighting

The invention relates to the technical field of engine state monitoring, in particular to an engine performance prediction method adopting sample adaptive weighting, which comprises the following steps of: establishing a first data set and a second data set, the second data set comprises operation d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WU YUTING, CHEN QIANJING, LUO BIN, SHAO DONG, LIU BOWEI, JIA ZHIGANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WU YUTING
CHEN QIANJING
LUO BIN
SHAO DONG
LIU BOWEI
JIA ZHIGANG
description The invention relates to the technical field of engine state monitoring, in particular to an engine performance prediction method adopting sample adaptive weighting, which comprises the following steps of: establishing a first data set and a second data set, the second data set comprises operation data sets of N other engines with the same model as the current engine; clustering the first data set and the second data set according to flight envelope distribution to obtain M clustering centers; sub-models are established, so that each of the M clustering centers comprises N sub-models; each clustering center initializes a prediction weight vector W, weighted averaging is carried out on N sub-models included in the prediction weight vector W, M linear weighted prediction models are constructed, and the linear weighted prediction models are used for predicting engine performance; and optimizing the prediction weight vector W of the clustering center. According to the method, data diversity is fully exerted, and
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114662409A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114662409A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114662409A3</originalsourceid><addsrcrecordid>eNrjZHB3zUvPzEtVKEgtSssvyk3MSwayi1JTMpNLMvPzFHJTSzLyUxQSU_ILSjLz0hWKE3MLclKB_EQgvyxVoTw1Mz0DJMPDwJqWmFOcyguluRkU3VxDnD10Uwvy41OLCxKTU_NSS-Kd_QwNTczMjEwMLB2NiVEDALbWNJY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Engine performance prediction method adopting sample adaptive weighting</title><source>esp@cenet</source><creator>WU YUTING ; CHEN QIANJING ; LUO BIN ; SHAO DONG ; LIU BOWEI ; JIA ZHIGANG</creator><creatorcontrib>WU YUTING ; CHEN QIANJING ; LUO BIN ; SHAO DONG ; LIU BOWEI ; JIA ZHIGANG</creatorcontrib><description>The invention relates to the technical field of engine state monitoring, in particular to an engine performance prediction method adopting sample adaptive weighting, which comprises the following steps of: establishing a first data set and a second data set, the second data set comprises operation data sets of N other engines with the same model as the current engine; clustering the first data set and the second data set according to flight envelope distribution to obtain M clustering centers; sub-models are established, so that each of the M clustering centers comprises N sub-models; each clustering center initializes a prediction weight vector W, weighted averaging is carried out on N sub-models included in the prediction weight vector W, M linear weighted prediction models are constructed, and the linear weighted prediction models are used for predicting engine performance; and optimizing the prediction weight vector W of the clustering center. According to the method, data diversity is fully exerted, and</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220624&amp;DB=EPODOC&amp;CC=CN&amp;NR=114662409A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220624&amp;DB=EPODOC&amp;CC=CN&amp;NR=114662409A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU YUTING</creatorcontrib><creatorcontrib>CHEN QIANJING</creatorcontrib><creatorcontrib>LUO BIN</creatorcontrib><creatorcontrib>SHAO DONG</creatorcontrib><creatorcontrib>LIU BOWEI</creatorcontrib><creatorcontrib>JIA ZHIGANG</creatorcontrib><title>Engine performance prediction method adopting sample adaptive weighting</title><description>The invention relates to the technical field of engine state monitoring, in particular to an engine performance prediction method adopting sample adaptive weighting, which comprises the following steps of: establishing a first data set and a second data set, the second data set comprises operation data sets of N other engines with the same model as the current engine; clustering the first data set and the second data set according to flight envelope distribution to obtain M clustering centers; sub-models are established, so that each of the M clustering centers comprises N sub-models; each clustering center initializes a prediction weight vector W, weighted averaging is carried out on N sub-models included in the prediction weight vector W, M linear weighted prediction models are constructed, and the linear weighted prediction models are used for predicting engine performance; and optimizing the prediction weight vector W of the clustering center. According to the method, data diversity is fully exerted, and</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB3zUvPzEtVKEgtSssvyk3MSwayi1JTMpNLMvPzFHJTSzLyUxQSU_ILSjLz0hWKE3MLclKB_EQgvyxVoTw1Mz0DJMPDwJqWmFOcyguluRkU3VxDnD10Uwvy41OLCxKTU_NSS-Kd_QwNTczMjEwMLB2NiVEDALbWNJY</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>WU YUTING</creator><creator>CHEN QIANJING</creator><creator>LUO BIN</creator><creator>SHAO DONG</creator><creator>LIU BOWEI</creator><creator>JIA ZHIGANG</creator><scope>EVB</scope></search><sort><creationdate>20220624</creationdate><title>Engine performance prediction method adopting sample adaptive weighting</title><author>WU YUTING ; CHEN QIANJING ; LUO BIN ; SHAO DONG ; LIU BOWEI ; JIA ZHIGANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114662409A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WU YUTING</creatorcontrib><creatorcontrib>CHEN QIANJING</creatorcontrib><creatorcontrib>LUO BIN</creatorcontrib><creatorcontrib>SHAO DONG</creatorcontrib><creatorcontrib>LIU BOWEI</creatorcontrib><creatorcontrib>JIA ZHIGANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU YUTING</au><au>CHEN QIANJING</au><au>LUO BIN</au><au>SHAO DONG</au><au>LIU BOWEI</au><au>JIA ZHIGANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Engine performance prediction method adopting sample adaptive weighting</title><date>2022-06-24</date><risdate>2022</risdate><abstract>The invention relates to the technical field of engine state monitoring, in particular to an engine performance prediction method adopting sample adaptive weighting, which comprises the following steps of: establishing a first data set and a second data set, the second data set comprises operation data sets of N other engines with the same model as the current engine; clustering the first data set and the second data set according to flight envelope distribution to obtain M clustering centers; sub-models are established, so that each of the M clustering centers comprises N sub-models; each clustering center initializes a prediction weight vector W, weighted averaging is carried out on N sub-models included in the prediction weight vector W, M linear weighted prediction models are constructed, and the linear weighted prediction models are used for predicting engine performance; and optimizing the prediction weight vector W of the clustering center. According to the method, data diversity is fully exerted, and</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114662409A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Engine performance prediction method adopting sample adaptive weighting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20YUTING&rft.date=2022-06-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114662409A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true