Leucorrhea cell detection method integrating double-flow weighted network and space attention mechanism

The invention discloses a leucorrhea cell detection method integrating a double-flow weighted network and a space attention mechanism, relates to the field of medical image processing, and mainly solves the problem of false detection or missing detection caused by subjective factors of doctors in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HUANG SHAONIAN, ZHOU XIANCHENG, TANG YANGFAN, WANG YIRAN, CHEN RONGYUAN, YUE LUN'AN, CHEN LANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HUANG SHAONIAN
ZHOU XIANCHENG
TANG YANGFAN
WANG YIRAN
CHEN RONGYUAN
YUE LUN'AN
CHEN LANG
description The invention discloses a leucorrhea cell detection method integrating a double-flow weighted network and a space attention mechanism, relates to the field of medical image processing, and mainly solves the problem of false detection or missing detection caused by subjective factors of doctors in the field of traditional leucorrhea cell detection by improving a yolov5 model. Comprising the following steps: firstly, carrying out Mosaic data enhancement on a leucorrhea cell image, and carrying out class label smoothing on a data set; extracting features of the image by using a backbone network combining a residual idea and a CSPNet idea (cross-stage local network); after the image features are extracted, using a top-up and bottom-down double-flow weighting network to reinforce the image features; sending the image features into a detection network, fusing a space attention mechanism, detecting the leucorrhea cell image, and generating a bounding box and a category to which the bounding box belongs so as to impr
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114627123A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114627123A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114627123A3</originalsourceid><addsrcrecordid>eNqNjLEOgjAURVkcjPoPzw9gAIzOhmgcjJM7qe2lbSyvpH2E39cYPsDpLOecdWHvmHRMyUGRRghkINDiI9MAcdGQZ4FNSjxbMnF6BZR9iDPN8NYJDDFkjulNig3lUWmQEgEvD-0U-zxsi1WvQsZu4abYXy_P9lZijB1-2ffTtY-qOhzrU1U35-Yf5wMhT0Cv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Leucorrhea cell detection method integrating double-flow weighted network and space attention mechanism</title><source>esp@cenet</source><creator>HUANG SHAONIAN ; ZHOU XIANCHENG ; TANG YANGFAN ; WANG YIRAN ; CHEN RONGYUAN ; YUE LUN'AN ; CHEN LANG</creator><creatorcontrib>HUANG SHAONIAN ; ZHOU XIANCHENG ; TANG YANGFAN ; WANG YIRAN ; CHEN RONGYUAN ; YUE LUN'AN ; CHEN LANG</creatorcontrib><description>The invention discloses a leucorrhea cell detection method integrating a double-flow weighted network and a space attention mechanism, relates to the field of medical image processing, and mainly solves the problem of false detection or missing detection caused by subjective factors of doctors in the field of traditional leucorrhea cell detection by improving a yolov5 model. Comprising the following steps: firstly, carrying out Mosaic data enhancement on a leucorrhea cell image, and carrying out class label smoothing on a data set; extracting features of the image by using a backbone network combining a residual idea and a CSPNet idea (cross-stage local network); after the image features are extracted, using a top-up and bottom-down double-flow weighting network to reinforce the image features; sending the image features into a detection network, fusing a space attention mechanism, detecting the leucorrhea cell image, and generating a bounding box and a category to which the bounding box belongs so as to impr</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220614&amp;DB=EPODOC&amp;CC=CN&amp;NR=114627123A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220614&amp;DB=EPODOC&amp;CC=CN&amp;NR=114627123A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUANG SHAONIAN</creatorcontrib><creatorcontrib>ZHOU XIANCHENG</creatorcontrib><creatorcontrib>TANG YANGFAN</creatorcontrib><creatorcontrib>WANG YIRAN</creatorcontrib><creatorcontrib>CHEN RONGYUAN</creatorcontrib><creatorcontrib>YUE LUN'AN</creatorcontrib><creatorcontrib>CHEN LANG</creatorcontrib><title>Leucorrhea cell detection method integrating double-flow weighted network and space attention mechanism</title><description>The invention discloses a leucorrhea cell detection method integrating a double-flow weighted network and a space attention mechanism, relates to the field of medical image processing, and mainly solves the problem of false detection or missing detection caused by subjective factors of doctors in the field of traditional leucorrhea cell detection by improving a yolov5 model. Comprising the following steps: firstly, carrying out Mosaic data enhancement on a leucorrhea cell image, and carrying out class label smoothing on a data set; extracting features of the image by using a backbone network combining a residual idea and a CSPNet idea (cross-stage local network); after the image features are extracted, using a top-up and bottom-down double-flow weighting network to reinforce the image features; sending the image features into a detection network, fusing a space attention mechanism, detecting the leucorrhea cell image, and generating a bounding box and a category to which the bounding box belongs so as to impr</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEOgjAURVkcjPoPzw9gAIzOhmgcjJM7qe2lbSyvpH2E39cYPsDpLOecdWHvmHRMyUGRRghkINDiI9MAcdGQZ4FNSjxbMnF6BZR9iDPN8NYJDDFkjulNig3lUWmQEgEvD-0U-zxsi1WvQsZu4abYXy_P9lZijB1-2ffTtY-qOhzrU1U35-Yf5wMhT0Cv</recordid><startdate>20220614</startdate><enddate>20220614</enddate><creator>HUANG SHAONIAN</creator><creator>ZHOU XIANCHENG</creator><creator>TANG YANGFAN</creator><creator>WANG YIRAN</creator><creator>CHEN RONGYUAN</creator><creator>YUE LUN'AN</creator><creator>CHEN LANG</creator><scope>EVB</scope></search><sort><creationdate>20220614</creationdate><title>Leucorrhea cell detection method integrating double-flow weighted network and space attention mechanism</title><author>HUANG SHAONIAN ; ZHOU XIANCHENG ; TANG YANGFAN ; WANG YIRAN ; CHEN RONGYUAN ; YUE LUN'AN ; CHEN LANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114627123A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>HUANG SHAONIAN</creatorcontrib><creatorcontrib>ZHOU XIANCHENG</creatorcontrib><creatorcontrib>TANG YANGFAN</creatorcontrib><creatorcontrib>WANG YIRAN</creatorcontrib><creatorcontrib>CHEN RONGYUAN</creatorcontrib><creatorcontrib>YUE LUN'AN</creatorcontrib><creatorcontrib>CHEN LANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANG SHAONIAN</au><au>ZHOU XIANCHENG</au><au>TANG YANGFAN</au><au>WANG YIRAN</au><au>CHEN RONGYUAN</au><au>YUE LUN'AN</au><au>CHEN LANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Leucorrhea cell detection method integrating double-flow weighted network and space attention mechanism</title><date>2022-06-14</date><risdate>2022</risdate><abstract>The invention discloses a leucorrhea cell detection method integrating a double-flow weighted network and a space attention mechanism, relates to the field of medical image processing, and mainly solves the problem of false detection or missing detection caused by subjective factors of doctors in the field of traditional leucorrhea cell detection by improving a yolov5 model. Comprising the following steps: firstly, carrying out Mosaic data enhancement on a leucorrhea cell image, and carrying out class label smoothing on a data set; extracting features of the image by using a backbone network combining a residual idea and a CSPNet idea (cross-stage local network); after the image features are extracted, using a top-up and bottom-down double-flow weighting network to reinforce the image features; sending the image features into a detection network, fusing a space attention mechanism, detecting the leucorrhea cell image, and generating a bounding box and a category to which the bounding box belongs so as to impr</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114627123A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Leucorrhea cell detection method integrating double-flow weighted network and space attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUANG%20SHAONIAN&rft.date=2022-06-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114627123A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true