Approximate maculopathy grading method, system and equipment and readable storage medium

The invention provides an approximate maculopathy grading method, system and device and a readable storage medium. The grading method comprises the steps of obtaining a to-be-graded fundus image; preprocessing the eye fundus image to be graded to obtain a processed eye fundus image; the processed ey...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LU LI, ZHOU GONGGAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LU LI
ZHOU GONGGAN
description The invention provides an approximate maculopathy grading method, system and device and a readable storage medium. The grading method comprises the steps of obtaining a to-be-graded fundus image; preprocessing the eye fundus image to be graded to obtain a processed eye fundus image; the processed eye fundus image meets a preset grading processing requirement; and inputting the processed fundus image into a pre-stored myopic macular lesion grading model, and carrying out lesion grading on the processed fundus image through the pre-stored myopic macular lesion grading model so as to output a prediction result of the pathological myopic lesion degree. According to the approximate maculopathy grading method, system and equipment and the readable storage medium, the grading of myopic maculopathy is realized, the grading efficiency is high, and the precision is very high. 本发明提供一种近似性黄斑病变的分级方法、系统、设备及可读存储介质,所述分级方法包括:获取待分级的眼底图像;预处理所述待分级的眼底图像,获取处理后的眼底图像;所述处理后的眼底图像符合预设分级处理要求;将所述处理后的眼底图像输入至预存近视性黄斑病变分级模型,通过所述预存近视性黄斑病变分级模型对
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114627043A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114627043A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114627043A3</originalsourceid><addsrcrecordid>eNqNjL0KwkAQBtNYiPoOa69gTNA6BMXKysIurLkvycH9ebcB8_aK-ABWw8Aw8-xehRD9S1sWkOV2ND6wDBP1kZV2PVnI4NWG0pQEltgpwnPUwcLJ1yJY8cOAkvjI_ecCpUe7zGYdm4TVj4tsfT7d6ssWwTdIgVs4SFNf87w87I-7sqiKf5o368I6ug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Approximate maculopathy grading method, system and equipment and readable storage medium</title><source>esp@cenet</source><creator>LU LI ; ZHOU GONGGAN</creator><creatorcontrib>LU LI ; ZHOU GONGGAN</creatorcontrib><description>The invention provides an approximate maculopathy grading method, system and device and a readable storage medium. The grading method comprises the steps of obtaining a to-be-graded fundus image; preprocessing the eye fundus image to be graded to obtain a processed eye fundus image; the processed eye fundus image meets a preset grading processing requirement; and inputting the processed fundus image into a pre-stored myopic macular lesion grading model, and carrying out lesion grading on the processed fundus image through the pre-stored myopic macular lesion grading model so as to output a prediction result of the pathological myopic lesion degree. According to the approximate maculopathy grading method, system and equipment and the readable storage medium, the grading of myopic maculopathy is realized, the grading efficiency is high, and the precision is very high. 本发明提供一种近似性黄斑病变的分级方法、系统、设备及可读存储介质,所述分级方法包括:获取待分级的眼底图像;预处理所述待分级的眼底图像,获取处理后的眼底图像;所述处理后的眼底图像符合预设分级处理要求;将所述处理后的眼底图像输入至预存近视性黄斑病变分级模型,通过所述预存近视性黄斑病变分级模型对</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220614&amp;DB=EPODOC&amp;CC=CN&amp;NR=114627043A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220614&amp;DB=EPODOC&amp;CC=CN&amp;NR=114627043A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU LI</creatorcontrib><creatorcontrib>ZHOU GONGGAN</creatorcontrib><title>Approximate maculopathy grading method, system and equipment and readable storage medium</title><description>The invention provides an approximate maculopathy grading method, system and device and a readable storage medium. The grading method comprises the steps of obtaining a to-be-graded fundus image; preprocessing the eye fundus image to be graded to obtain a processed eye fundus image; the processed eye fundus image meets a preset grading processing requirement; and inputting the processed fundus image into a pre-stored myopic macular lesion grading model, and carrying out lesion grading on the processed fundus image through the pre-stored myopic macular lesion grading model so as to output a prediction result of the pathological myopic lesion degree. According to the approximate maculopathy grading method, system and equipment and the readable storage medium, the grading of myopic maculopathy is realized, the grading efficiency is high, and the precision is very high. 本发明提供一种近似性黄斑病变的分级方法、系统、设备及可读存储介质,所述分级方法包括:获取待分级的眼底图像;预处理所述待分级的眼底图像,获取处理后的眼底图像;所述处理后的眼底图像符合预设分级处理要求;将所述处理后的眼底图像输入至预存近视性黄斑病变分级模型,通过所述预存近视性黄斑病变分级模型对</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjL0KwkAQBtNYiPoOa69gTNA6BMXKysIurLkvycH9ebcB8_aK-ABWw8Aw8-xehRD9S1sWkOV2ND6wDBP1kZV2PVnI4NWG0pQEltgpwnPUwcLJ1yJY8cOAkvjI_ecCpUe7zGYdm4TVj4tsfT7d6ssWwTdIgVs4SFNf87w87I-7sqiKf5o368I6ug</recordid><startdate>20220614</startdate><enddate>20220614</enddate><creator>LU LI</creator><creator>ZHOU GONGGAN</creator><scope>EVB</scope></search><sort><creationdate>20220614</creationdate><title>Approximate maculopathy grading method, system and equipment and readable storage medium</title><author>LU LI ; ZHOU GONGGAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114627043A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LU LI</creatorcontrib><creatorcontrib>ZHOU GONGGAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU LI</au><au>ZHOU GONGGAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Approximate maculopathy grading method, system and equipment and readable storage medium</title><date>2022-06-14</date><risdate>2022</risdate><abstract>The invention provides an approximate maculopathy grading method, system and device and a readable storage medium. The grading method comprises the steps of obtaining a to-be-graded fundus image; preprocessing the eye fundus image to be graded to obtain a processed eye fundus image; the processed eye fundus image meets a preset grading processing requirement; and inputting the processed fundus image into a pre-stored myopic macular lesion grading model, and carrying out lesion grading on the processed fundus image through the pre-stored myopic macular lesion grading model so as to output a prediction result of the pathological myopic lesion degree. According to the approximate maculopathy grading method, system and equipment and the readable storage medium, the grading of myopic maculopathy is realized, the grading efficiency is high, and the precision is very high. 本发明提供一种近似性黄斑病变的分级方法、系统、设备及可读存储介质,所述分级方法包括:获取待分级的眼底图像;预处理所述待分级的眼底图像,获取处理后的眼底图像;所述处理后的眼底图像符合预设分级处理要求;将所述处理后的眼底图像输入至预存近视性黄斑病变分级模型,通过所述预存近视性黄斑病变分级模型对</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114627043A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Approximate maculopathy grading method, system and equipment and readable storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20LI&rft.date=2022-06-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114627043A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true