Self-attention mechanism social network text sentiment analysis method based on disturbance improvement

The invention relates to a social network text sentiment analysis method based on a disturbance improvement self-attention mechanism. The method is used for analyzing sentiment expressed by a text in a network. The method comprises the following steps: segmenting sentences in web text data into word...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FENG HUAWEN, ZHENG YANKUI, MA QIANLI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FENG HUAWEN
ZHENG YANKUI
MA QIANLI
description The invention relates to a social network text sentiment analysis method based on a disturbance improvement self-attention mechanism. The method is used for analyzing sentiment expressed by a text in a network. The method comprises the following steps: segmenting sentences in web text data into words by using a word segmentation tool, and converting each word into a word vector by using a word embedding matrix; inputting the word vectors into a pre-training language model (BERT-base) to obtain a hidden layer state (feature representation) of each word; inputting the hidden layer state of the word into a classifier to obtain classification probability distribution of the sentence; performing disturbance improvement on the hidden layer state of each word and the classification probability distribution of the sentences to obtain attention supervision information; secondarily training the pre-training language model by using the attention supervision information; and inputting the word vectors into the improved a
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114626372A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114626372A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114626372A3</originalsourceid><addsrcrecordid>eNqNjTsOwjAQRN1QIOAOywFSJEGhjiIQFQ300cbZEAt_Iu_yuz2OxAFoZpr3ZpbqdiE7ZChCXkzw4EiP6A074KANWvAkrxDvIPQW4JlyKQA92g8bToKMoYcOmXpIA71hecQOvSYwborhSbOwVosBLdPm1yu1PR6uzSmjKbTEE2pKT21zzvNdVVTlvqjLf5gvUpdBHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Self-attention mechanism social network text sentiment analysis method based on disturbance improvement</title><source>esp@cenet</source><creator>FENG HUAWEN ; ZHENG YANKUI ; MA QIANLI</creator><creatorcontrib>FENG HUAWEN ; ZHENG YANKUI ; MA QIANLI</creatorcontrib><description>The invention relates to a social network text sentiment analysis method based on a disturbance improvement self-attention mechanism. The method is used for analyzing sentiment expressed by a text in a network. The method comprises the following steps: segmenting sentences in web text data into words by using a word segmentation tool, and converting each word into a word vector by using a word embedding matrix; inputting the word vectors into a pre-training language model (BERT-base) to obtain a hidden layer state (feature representation) of each word; inputting the hidden layer state of the word into a classifier to obtain classification probability distribution of the sentence; performing disturbance improvement on the hidden layer state of each word and the classification probability distribution of the sentences to obtain attention supervision information; secondarily training the pre-training language model by using the attention supervision information; and inputting the word vectors into the improved a</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220614&amp;DB=EPODOC&amp;CC=CN&amp;NR=114626372A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220614&amp;DB=EPODOC&amp;CC=CN&amp;NR=114626372A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FENG HUAWEN</creatorcontrib><creatorcontrib>ZHENG YANKUI</creatorcontrib><creatorcontrib>MA QIANLI</creatorcontrib><title>Self-attention mechanism social network text sentiment analysis method based on disturbance improvement</title><description>The invention relates to a social network text sentiment analysis method based on a disturbance improvement self-attention mechanism. The method is used for analyzing sentiment expressed by a text in a network. The method comprises the following steps: segmenting sentences in web text data into words by using a word segmentation tool, and converting each word into a word vector by using a word embedding matrix; inputting the word vectors into a pre-training language model (BERT-base) to obtain a hidden layer state (feature representation) of each word; inputting the hidden layer state of the word into a classifier to obtain classification probability distribution of the sentence; performing disturbance improvement on the hidden layer state of each word and the classification probability distribution of the sentences to obtain attention supervision information; secondarily training the pre-training language model by using the attention supervision information; and inputting the word vectors into the improved a</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTsOwjAQRN1QIOAOywFSJEGhjiIQFQ300cbZEAt_Iu_yuz2OxAFoZpr3ZpbqdiE7ZChCXkzw4EiP6A074KANWvAkrxDvIPQW4JlyKQA92g8bToKMoYcOmXpIA71hecQOvSYwborhSbOwVosBLdPm1yu1PR6uzSmjKbTEE2pKT21zzvNdVVTlvqjLf5gvUpdBHA</recordid><startdate>20220614</startdate><enddate>20220614</enddate><creator>FENG HUAWEN</creator><creator>ZHENG YANKUI</creator><creator>MA QIANLI</creator><scope>EVB</scope></search><sort><creationdate>20220614</creationdate><title>Self-attention mechanism social network text sentiment analysis method based on disturbance improvement</title><author>FENG HUAWEN ; ZHENG YANKUI ; MA QIANLI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114626372A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>FENG HUAWEN</creatorcontrib><creatorcontrib>ZHENG YANKUI</creatorcontrib><creatorcontrib>MA QIANLI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FENG HUAWEN</au><au>ZHENG YANKUI</au><au>MA QIANLI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Self-attention mechanism social network text sentiment analysis method based on disturbance improvement</title><date>2022-06-14</date><risdate>2022</risdate><abstract>The invention relates to a social network text sentiment analysis method based on a disturbance improvement self-attention mechanism. The method is used for analyzing sentiment expressed by a text in a network. The method comprises the following steps: segmenting sentences in web text data into words by using a word segmentation tool, and converting each word into a word vector by using a word embedding matrix; inputting the word vectors into a pre-training language model (BERT-base) to obtain a hidden layer state (feature representation) of each word; inputting the hidden layer state of the word into a classifier to obtain classification probability distribution of the sentence; performing disturbance improvement on the hidden layer state of each word and the classification probability distribution of the sentences to obtain attention supervision information; secondarily training the pre-training language model by using the attention supervision information; and inputting the word vectors into the improved a</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114626372A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Self-attention mechanism social network text sentiment analysis method based on disturbance improvement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FENG%20HUAWEN&rft.date=2022-06-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114626372A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true