Self-attention mechanism social network text sentiment analysis method based on disturbance improvement
The invention relates to a social network text sentiment analysis method based on a disturbance improvement self-attention mechanism. The method is used for analyzing sentiment expressed by a text in a network. The method comprises the following steps: segmenting sentences in web text data into word...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | FENG HUAWEN ZHENG YANKUI MA QIANLI |
description | The invention relates to a social network text sentiment analysis method based on a disturbance improvement self-attention mechanism. The method is used for analyzing sentiment expressed by a text in a network. The method comprises the following steps: segmenting sentences in web text data into words by using a word segmentation tool, and converting each word into a word vector by using a word embedding matrix; inputting the word vectors into a pre-training language model (BERT-base) to obtain a hidden layer state (feature representation) of each word; inputting the hidden layer state of the word into a classifier to obtain classification probability distribution of the sentence; performing disturbance improvement on the hidden layer state of each word and the classification probability distribution of the sentences to obtain attention supervision information; secondarily training the pre-training language model by using the attention supervision information; and inputting the word vectors into the improved a |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114626372A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114626372A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114626372A3</originalsourceid><addsrcrecordid>eNqNjTsOwjAQRN1QIOAOywFSJEGhjiIQFQ300cbZEAt_Iu_yuz2OxAFoZpr3ZpbqdiE7ZChCXkzw4EiP6A074KANWvAkrxDvIPQW4JlyKQA92g8bToKMoYcOmXpIA71hecQOvSYwborhSbOwVosBLdPm1yu1PR6uzSmjKbTEE2pKT21zzvNdVVTlvqjLf5gvUpdBHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Self-attention mechanism social network text sentiment analysis method based on disturbance improvement</title><source>esp@cenet</source><creator>FENG HUAWEN ; ZHENG YANKUI ; MA QIANLI</creator><creatorcontrib>FENG HUAWEN ; ZHENG YANKUI ; MA QIANLI</creatorcontrib><description>The invention relates to a social network text sentiment analysis method based on a disturbance improvement self-attention mechanism. The method is used for analyzing sentiment expressed by a text in a network. The method comprises the following steps: segmenting sentences in web text data into words by using a word segmentation tool, and converting each word into a word vector by using a word embedding matrix; inputting the word vectors into a pre-training language model (BERT-base) to obtain a hidden layer state (feature representation) of each word; inputting the hidden layer state of the word into a classifier to obtain classification probability distribution of the sentence; performing disturbance improvement on the hidden layer state of each word and the classification probability distribution of the sentences to obtain attention supervision information; secondarily training the pre-training language model by using the attention supervision information; and inputting the word vectors into the improved a</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220614&DB=EPODOC&CC=CN&NR=114626372A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220614&DB=EPODOC&CC=CN&NR=114626372A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FENG HUAWEN</creatorcontrib><creatorcontrib>ZHENG YANKUI</creatorcontrib><creatorcontrib>MA QIANLI</creatorcontrib><title>Self-attention mechanism social network text sentiment analysis method based on disturbance improvement</title><description>The invention relates to a social network text sentiment analysis method based on a disturbance improvement self-attention mechanism. The method is used for analyzing sentiment expressed by a text in a network. The method comprises the following steps: segmenting sentences in web text data into words by using a word segmentation tool, and converting each word into a word vector by using a word embedding matrix; inputting the word vectors into a pre-training language model (BERT-base) to obtain a hidden layer state (feature representation) of each word; inputting the hidden layer state of the word into a classifier to obtain classification probability distribution of the sentence; performing disturbance improvement on the hidden layer state of each word and the classification probability distribution of the sentences to obtain attention supervision information; secondarily training the pre-training language model by using the attention supervision information; and inputting the word vectors into the improved a</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTsOwjAQRN1QIOAOywFSJEGhjiIQFQ300cbZEAt_Iu_yuz2OxAFoZpr3ZpbqdiE7ZChCXkzw4EiP6A074KANWvAkrxDvIPQW4JlyKQA92g8bToKMoYcOmXpIA71hecQOvSYwborhSbOwVosBLdPm1yu1PR6uzSmjKbTEE2pKT21zzvNdVVTlvqjLf5gvUpdBHA</recordid><startdate>20220614</startdate><enddate>20220614</enddate><creator>FENG HUAWEN</creator><creator>ZHENG YANKUI</creator><creator>MA QIANLI</creator><scope>EVB</scope></search><sort><creationdate>20220614</creationdate><title>Self-attention mechanism social network text sentiment analysis method based on disturbance improvement</title><author>FENG HUAWEN ; ZHENG YANKUI ; MA QIANLI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114626372A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>FENG HUAWEN</creatorcontrib><creatorcontrib>ZHENG YANKUI</creatorcontrib><creatorcontrib>MA QIANLI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FENG HUAWEN</au><au>ZHENG YANKUI</au><au>MA QIANLI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Self-attention mechanism social network text sentiment analysis method based on disturbance improvement</title><date>2022-06-14</date><risdate>2022</risdate><abstract>The invention relates to a social network text sentiment analysis method based on a disturbance improvement self-attention mechanism. The method is used for analyzing sentiment expressed by a text in a network. The method comprises the following steps: segmenting sentences in web text data into words by using a word segmentation tool, and converting each word into a word vector by using a word embedding matrix; inputting the word vectors into a pre-training language model (BERT-base) to obtain a hidden layer state (feature representation) of each word; inputting the hidden layer state of the word into a classifier to obtain classification probability distribution of the sentence; performing disturbance improvement on the hidden layer state of each word and the classification probability distribution of the sentences to obtain attention supervision information; secondarily training the pre-training language model by using the attention supervision information; and inputting the word vectors into the improved a</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114626372A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Self-attention mechanism social network text sentiment analysis method based on disturbance improvement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FENG%20HUAWEN&rft.date=2022-06-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114626372A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |