Model training method applied to text recognition and text recognition method and device

The invention provides a model training method applied to text recognition and a text recognition method and device, and relates to artificial intelligence, in particular to the fields of natural language processing, deep learning, semantic analysis and the like. According to the specific implementa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN YONGFENG, WANG ZANBO, HUANG SHUO, CAO YUHUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN YONGFENG
WANG ZANBO
HUANG SHUO
CAO YUHUI
description The invention provides a model training method applied to text recognition and a text recognition method and device, and relates to artificial intelligence, in particular to the fields of natural language processing, deep learning, semantic analysis and the like. According to the specific implementation scheme, a first to-be-trained text set comprising texts without category labels and a second to-be-trained text set comprising preset second category labels are obtained, wherein the second to-be-trained text set comprises a plurality of text subsets; training the initial model based on the first to-be-trained text set to obtain a first model; repeating the following steps, wherein the initial value of i is 1: inputting the ith text subset into the first model to obtain a trained first model; determining that the trained first model is a new first model, and determining that the value of i is i + 1; and determining that a new first model obtained when a preset condition is met is a text recognition model. The
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114625874A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114625874A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114625874A3</originalsourceid><addsrcrecordid>eNrjZIjwzU9JzVEoKUrMzMvMS1fITS3JyE9RSCwoyMlMTVEoyVcoSa0oUShKTc5Pz8ssyczPU0jMS8EUhOkDyqWklmUmp_IwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDEzMjUwtzE0djYtQAALcFOn4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Model training method applied to text recognition and text recognition method and device</title><source>esp@cenet</source><creator>CHEN YONGFENG ; WANG ZANBO ; HUANG SHUO ; CAO YUHUI</creator><creatorcontrib>CHEN YONGFENG ; WANG ZANBO ; HUANG SHUO ; CAO YUHUI</creatorcontrib><description>The invention provides a model training method applied to text recognition and a text recognition method and device, and relates to artificial intelligence, in particular to the fields of natural language processing, deep learning, semantic analysis and the like. According to the specific implementation scheme, a first to-be-trained text set comprising texts without category labels and a second to-be-trained text set comprising preset second category labels are obtained, wherein the second to-be-trained text set comprises a plurality of text subsets; training the initial model based on the first to-be-trained text set to obtain a first model; repeating the following steps, wherein the initial value of i is 1: inputting the ith text subset into the first model to obtain a trained first model; determining that the trained first model is a new first model, and determining that the value of i is i + 1; and determining that a new first model obtained when a preset condition is met is a text recognition model. The</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220614&amp;DB=EPODOC&amp;CC=CN&amp;NR=114625874A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220614&amp;DB=EPODOC&amp;CC=CN&amp;NR=114625874A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN YONGFENG</creatorcontrib><creatorcontrib>WANG ZANBO</creatorcontrib><creatorcontrib>HUANG SHUO</creatorcontrib><creatorcontrib>CAO YUHUI</creatorcontrib><title>Model training method applied to text recognition and text recognition method and device</title><description>The invention provides a model training method applied to text recognition and a text recognition method and device, and relates to artificial intelligence, in particular to the fields of natural language processing, deep learning, semantic analysis and the like. According to the specific implementation scheme, a first to-be-trained text set comprising texts without category labels and a second to-be-trained text set comprising preset second category labels are obtained, wherein the second to-be-trained text set comprises a plurality of text subsets; training the initial model based on the first to-be-trained text set to obtain a first model; repeating the following steps, wherein the initial value of i is 1: inputting the ith text subset into the first model to obtain a trained first model; determining that the trained first model is a new first model, and determining that the value of i is i + 1; and determining that a new first model obtained when a preset condition is met is a text recognition model. The</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIjwzU9JzVEoKUrMzMvMS1fITS3JyE9RSCwoyMlMTVEoyVcoSa0oUShKTc5Pz8ssyczPU0jMS8EUhOkDyqWklmUmp_IwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDEzMjUwtzE0djYtQAALcFOn4</recordid><startdate>20220614</startdate><enddate>20220614</enddate><creator>CHEN YONGFENG</creator><creator>WANG ZANBO</creator><creator>HUANG SHUO</creator><creator>CAO YUHUI</creator><scope>EVB</scope></search><sort><creationdate>20220614</creationdate><title>Model training method applied to text recognition and text recognition method and device</title><author>CHEN YONGFENG ; WANG ZANBO ; HUANG SHUO ; CAO YUHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114625874A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN YONGFENG</creatorcontrib><creatorcontrib>WANG ZANBO</creatorcontrib><creatorcontrib>HUANG SHUO</creatorcontrib><creatorcontrib>CAO YUHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN YONGFENG</au><au>WANG ZANBO</au><au>HUANG SHUO</au><au>CAO YUHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Model training method applied to text recognition and text recognition method and device</title><date>2022-06-14</date><risdate>2022</risdate><abstract>The invention provides a model training method applied to text recognition and a text recognition method and device, and relates to artificial intelligence, in particular to the fields of natural language processing, deep learning, semantic analysis and the like. According to the specific implementation scheme, a first to-be-trained text set comprising texts without category labels and a second to-be-trained text set comprising preset second category labels are obtained, wherein the second to-be-trained text set comprises a plurality of text subsets; training the initial model based on the first to-be-trained text set to obtain a first model; repeating the following steps, wherein the initial value of i is 1: inputting the ith text subset into the first model to obtain a trained first model; determining that the trained first model is a new first model, and determining that the value of i is i + 1; and determining that a new first model obtained when a preset condition is met is a text recognition model. The</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114625874A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Model training method applied to text recognition and text recognition method and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20YONGFENG&rft.date=2022-06-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114625874A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true