Method for predicting carbon dioxide electroreduction copper alloy catalyst
The invention discloses a method for predicting a carbon dioxide electroreduction copper alloy catalyst, belongs to the field of carbon dioxide electrochemical reduction, and overcomes the problems of low efficiency and poor selectivity by applying density functional theory calculation and machine l...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MENG KONG SUN SHAORUI WANG HUIMIN XING MIAOJUAN WANG YAXIN FANG ZHAOLIN |
description | The invention discloses a method for predicting a carbon dioxide electroreduction copper alloy catalyst, belongs to the field of carbon dioxide electrochemical reduction, and overcomes the problems of low efficiency and poor selectivity by applying density functional theory calculation and machine learning. According to the method, the surface structures of different types of CuM alloys are optimized, and the adsorption energy of key intermediates (CO, HCOO, COOH and H) of a CO2 reduction reaction on each surface is calculated by applying a density functional theory. In order to reduce the spatial dimension of the features, feature parameters of five materials, including a work function (W), an atomic number (AN), an interplanar spacing (d), electronegativity (EN) and local electronegativity (xi), are selected, a gradient boosting regression (GBR) model with good prediction performance is obtained through machine learning training, and a training result is close to the prediction performance of a model contai |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114613445A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114613445A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114613445A3</originalsourceid><addsrcrecordid>eNqNyjEKAjEQRuE0FqLeYTyARdhoL4siiFb2S0z-dQMhE5IR3NubwgNYveJ7S3W9QSb2NHKhXOCDk5Be5Gx5ciIf-BM8CBFOCjd_N2_gOGcUsjHy3Gaxca6yVovRxorNryu1PZ8e_WWHzANqtg4JMvR3rc1Bd8bsj90_zxesJjYi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for predicting carbon dioxide electroreduction copper alloy catalyst</title><source>esp@cenet</source><creator>MENG KONG ; SUN SHAORUI ; WANG HUIMIN ; XING MIAOJUAN ; WANG YAXIN ; FANG ZHAOLIN</creator><creatorcontrib>MENG KONG ; SUN SHAORUI ; WANG HUIMIN ; XING MIAOJUAN ; WANG YAXIN ; FANG ZHAOLIN</creatorcontrib><description>The invention discloses a method for predicting a carbon dioxide electroreduction copper alloy catalyst, belongs to the field of carbon dioxide electrochemical reduction, and overcomes the problems of low efficiency and poor selectivity by applying density functional theory calculation and machine learning. According to the method, the surface structures of different types of CuM alloys are optimized, and the adsorption energy of key intermediates (CO, HCOO, COOH and H) of a CO2 reduction reaction on each surface is calculated by applying a density functional theory. In order to reduce the spatial dimension of the features, feature parameters of five materials, including a work function (W), an atomic number (AN), an interplanar spacing (d), electronegativity (EN) and local electronegativity (xi), are selected, a gradient boosting regression (GBR) model with good prediction performance is obtained through machine learning training, and a training result is close to the prediction performance of a model contai</description><language>chi ; eng</language><subject>APPARATUS THEREFOR ; CHEMISTRY ; ELECTROLYTIC OR ELECTROPHORETIC PROCESSES ; ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTIONOF COMPOUNDS OR NON-METALS ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; METALLURGY ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220610&DB=EPODOC&CC=CN&NR=114613445A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220610&DB=EPODOC&CC=CN&NR=114613445A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MENG KONG</creatorcontrib><creatorcontrib>SUN SHAORUI</creatorcontrib><creatorcontrib>WANG HUIMIN</creatorcontrib><creatorcontrib>XING MIAOJUAN</creatorcontrib><creatorcontrib>WANG YAXIN</creatorcontrib><creatorcontrib>FANG ZHAOLIN</creatorcontrib><title>Method for predicting carbon dioxide electroreduction copper alloy catalyst</title><description>The invention discloses a method for predicting a carbon dioxide electroreduction copper alloy catalyst, belongs to the field of carbon dioxide electrochemical reduction, and overcomes the problems of low efficiency and poor selectivity by applying density functional theory calculation and machine learning. According to the method, the surface structures of different types of CuM alloys are optimized, and the adsorption energy of key intermediates (CO, HCOO, COOH and H) of a CO2 reduction reaction on each surface is calculated by applying a density functional theory. In order to reduce the spatial dimension of the features, feature parameters of five materials, including a work function (W), an atomic number (AN), an interplanar spacing (d), electronegativity (EN) and local electronegativity (xi), are selected, a gradient boosting regression (GBR) model with good prediction performance is obtained through machine learning training, and a training result is close to the prediction performance of a model contai</description><subject>APPARATUS THEREFOR</subject><subject>CHEMISTRY</subject><subject>ELECTROLYTIC OR ELECTROPHORETIC PROCESSES</subject><subject>ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTIONOF COMPOUNDS OR NON-METALS</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>METALLURGY</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKAjEQRuE0FqLeYTyARdhoL4siiFb2S0z-dQMhE5IR3NubwgNYveJ7S3W9QSb2NHKhXOCDk5Be5Gx5ciIf-BM8CBFOCjd_N2_gOGcUsjHy3Gaxca6yVovRxorNryu1PZ8e_WWHzANqtg4JMvR3rc1Bd8bsj90_zxesJjYi</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>MENG KONG</creator><creator>SUN SHAORUI</creator><creator>WANG HUIMIN</creator><creator>XING MIAOJUAN</creator><creator>WANG YAXIN</creator><creator>FANG ZHAOLIN</creator><scope>EVB</scope></search><sort><creationdate>20220610</creationdate><title>Method for predicting carbon dioxide electroreduction copper alloy catalyst</title><author>MENG KONG ; SUN SHAORUI ; WANG HUIMIN ; XING MIAOJUAN ; WANG YAXIN ; FANG ZHAOLIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114613445A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>APPARATUS THEREFOR</topic><topic>CHEMISTRY</topic><topic>ELECTROLYTIC OR ELECTROPHORETIC PROCESSES</topic><topic>ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTIONOF COMPOUNDS OR NON-METALS</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>METALLURGY</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MENG KONG</creatorcontrib><creatorcontrib>SUN SHAORUI</creatorcontrib><creatorcontrib>WANG HUIMIN</creatorcontrib><creatorcontrib>XING MIAOJUAN</creatorcontrib><creatorcontrib>WANG YAXIN</creatorcontrib><creatorcontrib>FANG ZHAOLIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MENG KONG</au><au>SUN SHAORUI</au><au>WANG HUIMIN</au><au>XING MIAOJUAN</au><au>WANG YAXIN</au><au>FANG ZHAOLIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for predicting carbon dioxide electroreduction copper alloy catalyst</title><date>2022-06-10</date><risdate>2022</risdate><abstract>The invention discloses a method for predicting a carbon dioxide electroreduction copper alloy catalyst, belongs to the field of carbon dioxide electrochemical reduction, and overcomes the problems of low efficiency and poor selectivity by applying density functional theory calculation and machine learning. According to the method, the surface structures of different types of CuM alloys are optimized, and the adsorption energy of key intermediates (CO, HCOO, COOH and H) of a CO2 reduction reaction on each surface is calculated by applying a density functional theory. In order to reduce the spatial dimension of the features, feature parameters of five materials, including a work function (W), an atomic number (AN), an interplanar spacing (d), electronegativity (EN) and local electronegativity (xi), are selected, a gradient boosting regression (GBR) model with good prediction performance is obtained through machine learning training, and a training result is close to the prediction performance of a model contai</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114613445A |
source | esp@cenet |
subjects | APPARATUS THEREFOR CHEMISTRY ELECTROLYTIC OR ELECTROPHORETIC PROCESSES ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTIONOF COMPOUNDS OR NON-METALS INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS METALLURGY PHYSICS |
title | Method for predicting carbon dioxide electroreduction copper alloy catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MENG%20KONG&rft.date=2022-06-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114613445A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |