Text generation method, device and system in low-resource scene

The invention provides a text generation method, device and system in a low-resource scene, and the method comprises the steps: 1, inputting a small number of supervised training samples for a supervised network, inputting a large number of unsupervised training samples for an unsupervised network,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DENG TING, JIANG WEIFENG, LIU JUNNAN, TAI ZHENYING, LI JIANXIN, MAO QIANREN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DENG TING
JIANG WEIFENG
LIU JUNNAN
TAI ZHENYING
LI JIANXIN
MAO QIANREN
description The invention provides a text generation method, device and system in a low-resource scene, and the method comprises the steps: 1, inputting a small number of supervised training samples for a supervised network, inputting a large number of unsupervised training samples for an unsupervised network, copying two unsupervised documents, and carrying out the dropout of the embedded vectors of the unsupervised documents, so as to obtain two groups of embedded vectors; 2, generating a small neural network of a network parallel integration adapter for the large pre-training text, and forming a pre-training learning assembly based on adapter fine tuning; and step 3, performing consistent learning on the unsupervised network by adopting an adapter-based fine-tuning pre-training learning component for the supervised network and the unsupervised network, performing training and optimization of a text generation model in combination with supervised learning of the supervised network, and performing prediction by using th
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114611472A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114611472A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114611472A3</originalsourceid><addsrcrecordid>eNrjZLAPSa0oUUhPzUstSizJzM9TyE0tychP0VFISS3LTE5VSMxLUSiuLC5JzVXIzFPIyS_XLUotzi8tAkoVJwN18TCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCRJCiknhnP0NDEzMgNjdyNCZGDQB46TCu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Text generation method, device and system in low-resource scene</title><source>esp@cenet</source><creator>DENG TING ; JIANG WEIFENG ; LIU JUNNAN ; TAI ZHENYING ; LI JIANXIN ; MAO QIANREN</creator><creatorcontrib>DENG TING ; JIANG WEIFENG ; LIU JUNNAN ; TAI ZHENYING ; LI JIANXIN ; MAO QIANREN</creatorcontrib><description>The invention provides a text generation method, device and system in a low-resource scene, and the method comprises the steps: 1, inputting a small number of supervised training samples for a supervised network, inputting a large number of unsupervised training samples for an unsupervised network, copying two unsupervised documents, and carrying out the dropout of the embedded vectors of the unsupervised documents, so as to obtain two groups of embedded vectors; 2, generating a small neural network of a network parallel integration adapter for the large pre-training text, and forming a pre-training learning assembly based on adapter fine tuning; and step 3, performing consistent learning on the unsupervised network by adopting an adapter-based fine-tuning pre-training learning component for the supervised network and the unsupervised network, performing training and optimization of a text generation model in combination with supervised learning of the supervised network, and performing prediction by using th</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220610&amp;DB=EPODOC&amp;CC=CN&amp;NR=114611472A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220610&amp;DB=EPODOC&amp;CC=CN&amp;NR=114611472A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DENG TING</creatorcontrib><creatorcontrib>JIANG WEIFENG</creatorcontrib><creatorcontrib>LIU JUNNAN</creatorcontrib><creatorcontrib>TAI ZHENYING</creatorcontrib><creatorcontrib>LI JIANXIN</creatorcontrib><creatorcontrib>MAO QIANREN</creatorcontrib><title>Text generation method, device and system in low-resource scene</title><description>The invention provides a text generation method, device and system in a low-resource scene, and the method comprises the steps: 1, inputting a small number of supervised training samples for a supervised network, inputting a large number of unsupervised training samples for an unsupervised network, copying two unsupervised documents, and carrying out the dropout of the embedded vectors of the unsupervised documents, so as to obtain two groups of embedded vectors; 2, generating a small neural network of a network parallel integration adapter for the large pre-training text, and forming a pre-training learning assembly based on adapter fine tuning; and step 3, performing consistent learning on the unsupervised network by adopting an adapter-based fine-tuning pre-training learning component for the supervised network and the unsupervised network, performing training and optimization of a text generation model in combination with supervised learning of the supervised network, and performing prediction by using th</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAPSa0oUUhPzUstSizJzM9TyE0tychP0VFISS3LTE5VSMxLUSiuLC5JzVXIzFPIyS_XLUotzi8tAkoVJwN18TCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCRJCiknhnP0NDEzMgNjdyNCZGDQB46TCu</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>DENG TING</creator><creator>JIANG WEIFENG</creator><creator>LIU JUNNAN</creator><creator>TAI ZHENYING</creator><creator>LI JIANXIN</creator><creator>MAO QIANREN</creator><scope>EVB</scope></search><sort><creationdate>20220610</creationdate><title>Text generation method, device and system in low-resource scene</title><author>DENG TING ; JIANG WEIFENG ; LIU JUNNAN ; TAI ZHENYING ; LI JIANXIN ; MAO QIANREN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114611472A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DENG TING</creatorcontrib><creatorcontrib>JIANG WEIFENG</creatorcontrib><creatorcontrib>LIU JUNNAN</creatorcontrib><creatorcontrib>TAI ZHENYING</creatorcontrib><creatorcontrib>LI JIANXIN</creatorcontrib><creatorcontrib>MAO QIANREN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DENG TING</au><au>JIANG WEIFENG</au><au>LIU JUNNAN</au><au>TAI ZHENYING</au><au>LI JIANXIN</au><au>MAO QIANREN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Text generation method, device and system in low-resource scene</title><date>2022-06-10</date><risdate>2022</risdate><abstract>The invention provides a text generation method, device and system in a low-resource scene, and the method comprises the steps: 1, inputting a small number of supervised training samples for a supervised network, inputting a large number of unsupervised training samples for an unsupervised network, copying two unsupervised documents, and carrying out the dropout of the embedded vectors of the unsupervised documents, so as to obtain two groups of embedded vectors; 2, generating a small neural network of a network parallel integration adapter for the large pre-training text, and forming a pre-training learning assembly based on adapter fine tuning; and step 3, performing consistent learning on the unsupervised network by adopting an adapter-based fine-tuning pre-training learning component for the supervised network and the unsupervised network, performing training and optimization of a text generation model in combination with supervised learning of the supervised network, and performing prediction by using th</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114611472A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Text generation method, device and system in low-resource scene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DENG%20TING&rft.date=2022-06-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114611472A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true