Unmanned aerial vehicle small target identification method based on improved YOLOv4 network

The invention provides an unmanned aerial vehicle small target identification method based on an improved YOLOv4 network, and the method comprises the following steps: S1, carrying out the preprocessing of a collected graph, and generating a training data set and a test data set; s2, a small target...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU WEI, FAN ZHENGRONG, FANG LIYONG, LI HAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU WEI
FAN ZHENGRONG
FANG LIYONG
LI HAO
description The invention provides an unmanned aerial vehicle small target identification method based on an improved YOLOv4 network, and the method comprises the following steps: S1, carrying out the preprocessing of a collected graph, and generating a training data set and a test data set; s2, a small target recognition model is constructed, input of the small target recognition model is the training data and the test data, and output of the target recognition model is a target recognition result; the training data is data in the training data set, and the test data is data in the test data set; s3, inputting the training data to train the small target recognition model; and S4, inputting the test data to test the small target recognition model. According to the method, the moving small target object can be accurately identified, and the detection efficiency is improved while the detection accuracy is ensured. 本发明提出了一种基于改进YOLOv4网络的无人机小目标识别方法,包括以下步骤:S1,对采集的图形进行预处理,生成训练数据集和测试数据集;S2,构建用于小目标识别模型,所述小目标识别模型输入为所述训练数据和测试数据,所述目
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114565753A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114565753A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114565753A3</originalsourceid><addsrcrecordid>eNqNizsOwjAQBdNQIOAOywEoosRQowhEgUgDBaKIFntDVvgn2zLXxwUHoHoz0rx59bhZg9aSAqTAqCHTxFITRINaQ8LwogSsyCYeWWJiZ8FQmpyCJ8byK87GB5cL3_tzn1uwlD4uvJfVbEQdafXbRbU-Hq7daUPeDRQ9Sirl0F3quhVbsRPNvvmn-QJmUztU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unmanned aerial vehicle small target identification method based on improved YOLOv4 network</title><source>esp@cenet</source><creator>LIU WEI ; FAN ZHENGRONG ; FANG LIYONG ; LI HAO</creator><creatorcontrib>LIU WEI ; FAN ZHENGRONG ; FANG LIYONG ; LI HAO</creatorcontrib><description>The invention provides an unmanned aerial vehicle small target identification method based on an improved YOLOv4 network, and the method comprises the following steps: S1, carrying out the preprocessing of a collected graph, and generating a training data set and a test data set; s2, a small target recognition model is constructed, input of the small target recognition model is the training data and the test data, and output of the target recognition model is a target recognition result; the training data is data in the training data set, and the test data is data in the test data set; s3, inputting the training data to train the small target recognition model; and S4, inputting the test data to test the small target recognition model. According to the method, the moving small target object can be accurately identified, and the detection efficiency is improved while the detection accuracy is ensured. 本发明提出了一种基于改进YOLOv4网络的无人机小目标识别方法,包括以下步骤:S1,对采集的图形进行预处理,生成训练数据集和测试数据集;S2,构建用于小目标识别模型,所述小目标识别模型输入为所述训练数据和测试数据,所述目</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220531&amp;DB=EPODOC&amp;CC=CN&amp;NR=114565753A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220531&amp;DB=EPODOC&amp;CC=CN&amp;NR=114565753A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>FAN ZHENGRONG</creatorcontrib><creatorcontrib>FANG LIYONG</creatorcontrib><creatorcontrib>LI HAO</creatorcontrib><title>Unmanned aerial vehicle small target identification method based on improved YOLOv4 network</title><description>The invention provides an unmanned aerial vehicle small target identification method based on an improved YOLOv4 network, and the method comprises the following steps: S1, carrying out the preprocessing of a collected graph, and generating a training data set and a test data set; s2, a small target recognition model is constructed, input of the small target recognition model is the training data and the test data, and output of the target recognition model is a target recognition result; the training data is data in the training data set, and the test data is data in the test data set; s3, inputting the training data to train the small target recognition model; and S4, inputting the test data to test the small target recognition model. According to the method, the moving small target object can be accurately identified, and the detection efficiency is improved while the detection accuracy is ensured. 本发明提出了一种基于改进YOLOv4网络的无人机小目标识别方法,包括以下步骤:S1,对采集的图形进行预处理,生成训练数据集和测试数据集;S2,构建用于小目标识别模型,所述小目标识别模型输入为所述训练数据和测试数据,所述目</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsOwjAQBdNQIOAOywEoosRQowhEgUgDBaKIFntDVvgn2zLXxwUHoHoz0rx59bhZg9aSAqTAqCHTxFITRINaQ8LwogSsyCYeWWJiZ8FQmpyCJ8byK87GB5cL3_tzn1uwlD4uvJfVbEQdafXbRbU-Hq7daUPeDRQ9Sirl0F3quhVbsRPNvvmn-QJmUztU</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>LIU WEI</creator><creator>FAN ZHENGRONG</creator><creator>FANG LIYONG</creator><creator>LI HAO</creator><scope>EVB</scope></search><sort><creationdate>20220531</creationdate><title>Unmanned aerial vehicle small target identification method based on improved YOLOv4 network</title><author>LIU WEI ; FAN ZHENGRONG ; FANG LIYONG ; LI HAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114565753A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>FAN ZHENGRONG</creatorcontrib><creatorcontrib>FANG LIYONG</creatorcontrib><creatorcontrib>LI HAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU WEI</au><au>FAN ZHENGRONG</au><au>FANG LIYONG</au><au>LI HAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unmanned aerial vehicle small target identification method based on improved YOLOv4 network</title><date>2022-05-31</date><risdate>2022</risdate><abstract>The invention provides an unmanned aerial vehicle small target identification method based on an improved YOLOv4 network, and the method comprises the following steps: S1, carrying out the preprocessing of a collected graph, and generating a training data set and a test data set; s2, a small target recognition model is constructed, input of the small target recognition model is the training data and the test data, and output of the target recognition model is a target recognition result; the training data is data in the training data set, and the test data is data in the test data set; s3, inputting the training data to train the small target recognition model; and S4, inputting the test data to test the small target recognition model. According to the method, the moving small target object can be accurately identified, and the detection efficiency is improved while the detection accuracy is ensured. 本发明提出了一种基于改进YOLOv4网络的无人机小目标识别方法,包括以下步骤:S1,对采集的图形进行预处理,生成训练数据集和测试数据集;S2,构建用于小目标识别模型,所述小目标识别模型输入为所述训练数据和测试数据,所述目</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114565753A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Unmanned aerial vehicle small target identification method based on improved YOLOv4 network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20WEI&rft.date=2022-05-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114565753A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true