Large skin edge defect detection method based on multi-scale neighborhood
The invention discloses a large skin edge defect detection method based on a multi-scale neighborhood. According to the method, a multi-scale space search method is constructed, space information of corresponding key points is better judged, the search direction is optimized and three-dimensional po...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | NIE JINGMOU XIE HE LIU XUEBING MAO JIANXU FENG MINGTAO ZHU QING WU ZIJIE WANG YAONAN |
description | The invention discloses a large skin edge defect detection method based on a multi-scale neighborhood. According to the method, a multi-scale space search method is constructed, space information of corresponding key points is better judged, the search direction is optimized and three-dimensional point cloud edge points are recognized on the basis of the space information, the operation efficiency of three-dimensional image edge recognition is greatly improved, and the recognition success rate is increased; and meanwhile, ordering the extracted boundary points, and detecting defects by using the change of a mask characteristic value. According to the method, edge defect detection of the point cloud image can be more accurately realized in a shorter time, and the method has extremely high algorithm robustness and can be applied to the field of precision detection with large scale, complex structure and high efficiency requirement.
本发明公开了一种基于多尺度邻域的大型蒙皮边缘缺陷检测方法。该方法通过构建一种多尺度空间搜索方法,更好的判断对应关键点的空间信息,并以此为依据优化搜索方向以及识别 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114565629A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114565629A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114565629A3</originalsourceid><addsrcrecordid>eNrjZPD0SSxKT1Uozs7MU0hNAbJSUtNSk0uAVAmQyszPU8hNLcnIT1FISixOTVEA8UtzSjJ1i5MTc1IV8lIz0zOS8osy8vNTeBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGJqZmpmZGlozExagCw0jRy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Large skin edge defect detection method based on multi-scale neighborhood</title><source>esp@cenet</source><creator>NIE JINGMOU ; XIE HE ; LIU XUEBING ; MAO JIANXU ; FENG MINGTAO ; ZHU QING ; WU ZIJIE ; WANG YAONAN</creator><creatorcontrib>NIE JINGMOU ; XIE HE ; LIU XUEBING ; MAO JIANXU ; FENG MINGTAO ; ZHU QING ; WU ZIJIE ; WANG YAONAN</creatorcontrib><description>The invention discloses a large skin edge defect detection method based on a multi-scale neighborhood. According to the method, a multi-scale space search method is constructed, space information of corresponding key points is better judged, the search direction is optimized and three-dimensional point cloud edge points are recognized on the basis of the space information, the operation efficiency of three-dimensional image edge recognition is greatly improved, and the recognition success rate is increased; and meanwhile, ordering the extracted boundary points, and detecting defects by using the change of a mask characteristic value. According to the method, edge defect detection of the point cloud image can be more accurately realized in a shorter time, and the method has extremely high algorithm robustness and can be applied to the field of precision detection with large scale, complex structure and high efficiency requirement.
本发明公开了一种基于多尺度邻域的大型蒙皮边缘缺陷检测方法。该方法通过构建一种多尺度空间搜索方法,更好的判断对应关键点的空间信息,并以此为依据优化搜索方向以及识别</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220531&DB=EPODOC&CC=CN&NR=114565629A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220531&DB=EPODOC&CC=CN&NR=114565629A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NIE JINGMOU</creatorcontrib><creatorcontrib>XIE HE</creatorcontrib><creatorcontrib>LIU XUEBING</creatorcontrib><creatorcontrib>MAO JIANXU</creatorcontrib><creatorcontrib>FENG MINGTAO</creatorcontrib><creatorcontrib>ZHU QING</creatorcontrib><creatorcontrib>WU ZIJIE</creatorcontrib><creatorcontrib>WANG YAONAN</creatorcontrib><title>Large skin edge defect detection method based on multi-scale neighborhood</title><description>The invention discloses a large skin edge defect detection method based on a multi-scale neighborhood. According to the method, a multi-scale space search method is constructed, space information of corresponding key points is better judged, the search direction is optimized and three-dimensional point cloud edge points are recognized on the basis of the space information, the operation efficiency of three-dimensional image edge recognition is greatly improved, and the recognition success rate is increased; and meanwhile, ordering the extracted boundary points, and detecting defects by using the change of a mask characteristic value. According to the method, edge defect detection of the point cloud image can be more accurately realized in a shorter time, and the method has extremely high algorithm robustness and can be applied to the field of precision detection with large scale, complex structure and high efficiency requirement.
本发明公开了一种基于多尺度邻域的大型蒙皮边缘缺陷检测方法。该方法通过构建一种多尺度空间搜索方法,更好的判断对应关键点的空间信息,并以此为依据优化搜索方向以及识别</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD0SSxKT1Uozs7MU0hNAbJSUtNSk0uAVAmQyszPU8hNLcnIT1FISixOTVEA8UtzSjJ1i5MTc1IV8lIz0zOS8osy8vNTeBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGJqZmpmZGlozExagCw0jRy</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>NIE JINGMOU</creator><creator>XIE HE</creator><creator>LIU XUEBING</creator><creator>MAO JIANXU</creator><creator>FENG MINGTAO</creator><creator>ZHU QING</creator><creator>WU ZIJIE</creator><creator>WANG YAONAN</creator><scope>EVB</scope></search><sort><creationdate>20220531</creationdate><title>Large skin edge defect detection method based on multi-scale neighborhood</title><author>NIE JINGMOU ; XIE HE ; LIU XUEBING ; MAO JIANXU ; FENG MINGTAO ; ZHU QING ; WU ZIJIE ; WANG YAONAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114565629A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>NIE JINGMOU</creatorcontrib><creatorcontrib>XIE HE</creatorcontrib><creatorcontrib>LIU XUEBING</creatorcontrib><creatorcontrib>MAO JIANXU</creatorcontrib><creatorcontrib>FENG MINGTAO</creatorcontrib><creatorcontrib>ZHU QING</creatorcontrib><creatorcontrib>WU ZIJIE</creatorcontrib><creatorcontrib>WANG YAONAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NIE JINGMOU</au><au>XIE HE</au><au>LIU XUEBING</au><au>MAO JIANXU</au><au>FENG MINGTAO</au><au>ZHU QING</au><au>WU ZIJIE</au><au>WANG YAONAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Large skin edge defect detection method based on multi-scale neighborhood</title><date>2022-05-31</date><risdate>2022</risdate><abstract>The invention discloses a large skin edge defect detection method based on a multi-scale neighborhood. According to the method, a multi-scale space search method is constructed, space information of corresponding key points is better judged, the search direction is optimized and three-dimensional point cloud edge points are recognized on the basis of the space information, the operation efficiency of three-dimensional image edge recognition is greatly improved, and the recognition success rate is increased; and meanwhile, ordering the extracted boundary points, and detecting defects by using the change of a mask characteristic value. According to the method, edge defect detection of the point cloud image can be more accurately realized in a shorter time, and the method has extremely high algorithm robustness and can be applied to the field of precision detection with large scale, complex structure and high efficiency requirement.
本发明公开了一种基于多尺度邻域的大型蒙皮边缘缺陷检测方法。该方法通过构建一种多尺度空间搜索方法,更好的判断对应关键点的空间信息,并以此为依据优化搜索方向以及识别</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114565629A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Large skin edge defect detection method based on multi-scale neighborhood |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NIE%20JINGMOU&rft.date=2022-05-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114565629A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |