Road segmentation method and computer device
The invention discloses a road segmentation method and a computer device, and the method comprises the steps: obtaining N images from a high-resolution road data set obtained through aerial photographing of an unmanned plane, and obtaining a training set through the N images; training a road extract...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HE WEI HU WENKE TAN KECHENG XU QIANGHONG LIU HAO LIU CHENGZHAO MA CHENZHE |
description | The invention discloses a road segmentation method and a computer device, and the method comprises the steps: obtaining N images from a high-resolution road data set obtained through aerial photographing of an unmanned plane, and obtaining a training set through the N images; training a road extraction model by using the training set to obtain a trained road extraction model; and inputting a to-be-tested image into the trained road extraction model to obtain a road extraction result. According to the method, a double-attention residual learning module is provided, extraction of global information is taken into consideration besides adaptive adjustment of the receptive field, road topological structure features can be captured more accurately, the receptive field better fitting a target is obtained, and the continuity of road extraction is improved.
本发明公开了一种道路分割方法及计算机装置,从无人机航拍高分辨率道路数据集获取N张图像,利用所述N张图像获取训练集;利用所述训练集训练道路提取模型,得到训练后的道路提取模型;将待测试图像输入所述训练后的道路提取模型,得到道路提取结果。本发明提出了双注意力的残差学习模块,在自适应调节感受野之外兼顾了全局信息的提取,能够更准确的捕 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114550014A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114550014A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114550014A3</originalsourceid><addsrcrecordid>eNrjZNAJyk9MUShOTc9NzStJLMnMz1PITS3JyE9RSMxLUUjOzy0oLUktUkhJLctMTuVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGJqamBgaGJo7GxKgBAJn1KcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Road segmentation method and computer device</title><source>esp@cenet</source><creator>HE WEI ; HU WENKE ; TAN KECHENG ; XU QIANGHONG ; LIU HAO ; LIU CHENGZHAO ; MA CHENZHE</creator><creatorcontrib>HE WEI ; HU WENKE ; TAN KECHENG ; XU QIANGHONG ; LIU HAO ; LIU CHENGZHAO ; MA CHENZHE</creatorcontrib><description>The invention discloses a road segmentation method and a computer device, and the method comprises the steps: obtaining N images from a high-resolution road data set obtained through aerial photographing of an unmanned plane, and obtaining a training set through the N images; training a road extraction model by using the training set to obtain a trained road extraction model; and inputting a to-be-tested image into the trained road extraction model to obtain a road extraction result. According to the method, a double-attention residual learning module is provided, extraction of global information is taken into consideration besides adaptive adjustment of the receptive field, road topological structure features can be captured more accurately, the receptive field better fitting a target is obtained, and the continuity of road extraction is improved.
本发明公开了一种道路分割方法及计算机装置,从无人机航拍高分辨率道路数据集获取N张图像,利用所述N张图像获取训练集;利用所述训练集训练道路提取模型,得到训练后的道路提取模型;将待测试图像输入所述训练后的道路提取模型,得到道路提取结果。本发明提出了双注意力的残差学习模块,在自适应调节感受野之外兼顾了全局信息的提取,能够更准确的捕</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220527&DB=EPODOC&CC=CN&NR=114550014A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220527&DB=EPODOC&CC=CN&NR=114550014A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HE WEI</creatorcontrib><creatorcontrib>HU WENKE</creatorcontrib><creatorcontrib>TAN KECHENG</creatorcontrib><creatorcontrib>XU QIANGHONG</creatorcontrib><creatorcontrib>LIU HAO</creatorcontrib><creatorcontrib>LIU CHENGZHAO</creatorcontrib><creatorcontrib>MA CHENZHE</creatorcontrib><title>Road segmentation method and computer device</title><description>The invention discloses a road segmentation method and a computer device, and the method comprises the steps: obtaining N images from a high-resolution road data set obtained through aerial photographing of an unmanned plane, and obtaining a training set through the N images; training a road extraction model by using the training set to obtain a trained road extraction model; and inputting a to-be-tested image into the trained road extraction model to obtain a road extraction result. According to the method, a double-attention residual learning module is provided, extraction of global information is taken into consideration besides adaptive adjustment of the receptive field, road topological structure features can be captured more accurately, the receptive field better fitting a target is obtained, and the continuity of road extraction is improved.
本发明公开了一种道路分割方法及计算机装置,从无人机航拍高分辨率道路数据集获取N张图像,利用所述N张图像获取训练集;利用所述训练集训练道路提取模型,得到训练后的道路提取模型;将待测试图像输入所述训练后的道路提取模型,得到道路提取结果。本发明提出了双注意力的残差学习模块,在自适应调节感受野之外兼顾了全局信息的提取,能够更准确的捕</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAJyk9MUShOTc9NzStJLMnMz1PITS3JyE9RSMxLUUjOzy0oLUktUkhJLctMTuVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGJqamBgaGJo7GxKgBAJn1KcQ</recordid><startdate>20220527</startdate><enddate>20220527</enddate><creator>HE WEI</creator><creator>HU WENKE</creator><creator>TAN KECHENG</creator><creator>XU QIANGHONG</creator><creator>LIU HAO</creator><creator>LIU CHENGZHAO</creator><creator>MA CHENZHE</creator><scope>EVB</scope></search><sort><creationdate>20220527</creationdate><title>Road segmentation method and computer device</title><author>HE WEI ; HU WENKE ; TAN KECHENG ; XU QIANGHONG ; LIU HAO ; LIU CHENGZHAO ; MA CHENZHE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114550014A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>HE WEI</creatorcontrib><creatorcontrib>HU WENKE</creatorcontrib><creatorcontrib>TAN KECHENG</creatorcontrib><creatorcontrib>XU QIANGHONG</creatorcontrib><creatorcontrib>LIU HAO</creatorcontrib><creatorcontrib>LIU CHENGZHAO</creatorcontrib><creatorcontrib>MA CHENZHE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HE WEI</au><au>HU WENKE</au><au>TAN KECHENG</au><au>XU QIANGHONG</au><au>LIU HAO</au><au>LIU CHENGZHAO</au><au>MA CHENZHE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Road segmentation method and computer device</title><date>2022-05-27</date><risdate>2022</risdate><abstract>The invention discloses a road segmentation method and a computer device, and the method comprises the steps: obtaining N images from a high-resolution road data set obtained through aerial photographing of an unmanned plane, and obtaining a training set through the N images; training a road extraction model by using the training set to obtain a trained road extraction model; and inputting a to-be-tested image into the trained road extraction model to obtain a road extraction result. According to the method, a double-attention residual learning module is provided, extraction of global information is taken into consideration besides adaptive adjustment of the receptive field, road topological structure features can be captured more accurately, the receptive field better fitting a target is obtained, and the continuity of road extraction is improved.
本发明公开了一种道路分割方法及计算机装置,从无人机航拍高分辨率道路数据集获取N张图像,利用所述N张图像获取训练集;利用所述训练集训练道路提取模型,得到训练后的道路提取模型;将待测试图像输入所述训练后的道路提取模型,得到道路提取结果。本发明提出了双注意力的残差学习模块,在自适应调节感受野之外兼顾了全局信息的提取,能够更准确的捕</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114550014A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Road segmentation method and computer device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HE%20WEI&rft.date=2022-05-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114550014A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |