Intelligent Raman spectrum classification method based on convolutional neural network
The invention discloses an intelligent Raman spectrum classification method based on a convolutional neural network, and the method comprises the steps: S1, carrying out the correction of a LabRAM HR Evotion Raman spectrometer through a silicon wafer, and carrying out a Raman experiment; step S2, ca...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZENG WANDAN HUANG ZHONGMIN |
description | The invention discloses an intelligent Raman spectrum classification method based on a convolutional neural network, and the method comprises the steps: S1, carrying out the correction of a LabRAM HR Evotion Raman spectrometer through a silicon wafer, and carrying out a Raman experiment; step S2, carrying out pretreatment on the collected Raman spectrum experiment data; s3, constructing a classification model based on a convolutional neural network, wherein the classification model is used for classifying the Raman spectrum data in different preprocessing modes; step S4, data classification: after model construction is completed, randomly dividing the three parts of Raman spectrum data into a training set and a test set according to a ratio of 5: 1, putting the training set and the test set into a convolutional network for training, and performing data analysis after training is completed; and S5, data analysis: carrying out a contrast experiment, analyzing the advantages and disadvantages of a data preproces |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114544592A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114544592A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114544592A3</originalsourceid><addsrcrecordid>eNqNiksOAUEQQHtjIbhDOYDF0LOwlAlhYyFiOyk9NXR0V3X6w_UNcQCrl5f3xupy4EzO2RtxhhN6ZEiBTI7Fg3GYku2twWyFwVO-SwdXTNTB4Eb4Ka58GjpgKvGL_JL4mKpRjy7R7MeJmu-252a_oCAtpYCGhrNtjlWla63r9XKz-ud5A5X3Oos</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent Raman spectrum classification method based on convolutional neural network</title><source>esp@cenet</source><creator>ZENG WANDAN ; HUANG ZHONGMIN</creator><creatorcontrib>ZENG WANDAN ; HUANG ZHONGMIN</creatorcontrib><description>The invention discloses an intelligent Raman spectrum classification method based on a convolutional neural network, and the method comprises the steps: S1, carrying out the correction of a LabRAM HR Evotion Raman spectrometer through a silicon wafer, and carrying out a Raman experiment; step S2, carrying out pretreatment on the collected Raman spectrum experiment data; s3, constructing a classification model based on a convolutional neural network, wherein the classification model is used for classifying the Raman spectrum data in different preprocessing modes; step S4, data classification: after model construction is completed, randomly dividing the three parts of Raman spectrum data into a training set and a test set according to a ratio of 5: 1, putting the training set and the test set into a convolutional network for training, and performing data analysis after training is completed; and S5, data analysis: carrying out a contrast experiment, analyzing the advantages and disadvantages of a data preproces</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220527&DB=EPODOC&CC=CN&NR=114544592A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220527&DB=EPODOC&CC=CN&NR=114544592A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZENG WANDAN</creatorcontrib><creatorcontrib>HUANG ZHONGMIN</creatorcontrib><title>Intelligent Raman spectrum classification method based on convolutional neural network</title><description>The invention discloses an intelligent Raman spectrum classification method based on a convolutional neural network, and the method comprises the steps: S1, carrying out the correction of a LabRAM HR Evotion Raman spectrometer through a silicon wafer, and carrying out a Raman experiment; step S2, carrying out pretreatment on the collected Raman spectrum experiment data; s3, constructing a classification model based on a convolutional neural network, wherein the classification model is used for classifying the Raman spectrum data in different preprocessing modes; step S4, data classification: after model construction is completed, randomly dividing the three parts of Raman spectrum data into a training set and a test set according to a ratio of 5: 1, putting the training set and the test set into a convolutional network for training, and performing data analysis after training is completed; and S5, data analysis: carrying out a contrast experiment, analyzing the advantages and disadvantages of a data preproces</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNiksOAUEQQHtjIbhDOYDF0LOwlAlhYyFiOyk9NXR0V3X6w_UNcQCrl5f3xupy4EzO2RtxhhN6ZEiBTI7Fg3GYku2twWyFwVO-SwdXTNTB4Eb4Ka58GjpgKvGL_JL4mKpRjy7R7MeJmu-252a_oCAtpYCGhrNtjlWla63r9XKz-ud5A5X3Oos</recordid><startdate>20220527</startdate><enddate>20220527</enddate><creator>ZENG WANDAN</creator><creator>HUANG ZHONGMIN</creator><scope>EVB</scope></search><sort><creationdate>20220527</creationdate><title>Intelligent Raman spectrum classification method based on convolutional neural network</title><author>ZENG WANDAN ; HUANG ZHONGMIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114544592A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>ZENG WANDAN</creatorcontrib><creatorcontrib>HUANG ZHONGMIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZENG WANDAN</au><au>HUANG ZHONGMIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent Raman spectrum classification method based on convolutional neural network</title><date>2022-05-27</date><risdate>2022</risdate><abstract>The invention discloses an intelligent Raman spectrum classification method based on a convolutional neural network, and the method comprises the steps: S1, carrying out the correction of a LabRAM HR Evotion Raman spectrometer through a silicon wafer, and carrying out a Raman experiment; step S2, carrying out pretreatment on the collected Raman spectrum experiment data; s3, constructing a classification model based on a convolutional neural network, wherein the classification model is used for classifying the Raman spectrum data in different preprocessing modes; step S4, data classification: after model construction is completed, randomly dividing the three parts of Raman spectrum data into a training set and a test set according to a ratio of 5: 1, putting the training set and the test set into a convolutional network for training, and performing data analysis after training is completed; and S5, data analysis: carrying out a contrast experiment, analyzing the advantages and disadvantages of a data preproces</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114544592A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES MEASURING PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS TESTING |
title | Intelligent Raman spectrum classification method based on convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZENG%20WANDAN&rft.date=2022-05-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114544592A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |