Intelligent Raman spectrum classification method based on convolutional neural network

The invention discloses an intelligent Raman spectrum classification method based on a convolutional neural network, and the method comprises the steps: S1, carrying out the correction of a LabRAM HR Evotion Raman spectrometer through a silicon wafer, and carrying out a Raman experiment; step S2, ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZENG WANDAN, HUANG ZHONGMIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZENG WANDAN
HUANG ZHONGMIN
description The invention discloses an intelligent Raman spectrum classification method based on a convolutional neural network, and the method comprises the steps: S1, carrying out the correction of a LabRAM HR Evotion Raman spectrometer through a silicon wafer, and carrying out a Raman experiment; step S2, carrying out pretreatment on the collected Raman spectrum experiment data; s3, constructing a classification model based on a convolutional neural network, wherein the classification model is used for classifying the Raman spectrum data in different preprocessing modes; step S4, data classification: after model construction is completed, randomly dividing the three parts of Raman spectrum data into a training set and a test set according to a ratio of 5: 1, putting the training set and the test set into a convolutional network for training, and performing data analysis after training is completed; and S5, data analysis: carrying out a contrast experiment, analyzing the advantages and disadvantages of a data preproces
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114544592A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114544592A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114544592A3</originalsourceid><addsrcrecordid>eNqNiksOAUEQQHtjIbhDOYDF0LOwlAlhYyFiOyk9NXR0V3X6w_UNcQCrl5f3xupy4EzO2RtxhhN6ZEiBTI7Fg3GYku2twWyFwVO-SwdXTNTB4Eb4Ka58GjpgKvGL_JL4mKpRjy7R7MeJmu-252a_oCAtpYCGhrNtjlWla63r9XKz-ud5A5X3Oos</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent Raman spectrum classification method based on convolutional neural network</title><source>esp@cenet</source><creator>ZENG WANDAN ; HUANG ZHONGMIN</creator><creatorcontrib>ZENG WANDAN ; HUANG ZHONGMIN</creatorcontrib><description>The invention discloses an intelligent Raman spectrum classification method based on a convolutional neural network, and the method comprises the steps: S1, carrying out the correction of a LabRAM HR Evotion Raman spectrometer through a silicon wafer, and carrying out a Raman experiment; step S2, carrying out pretreatment on the collected Raman spectrum experiment data; s3, constructing a classification model based on a convolutional neural network, wherein the classification model is used for classifying the Raman spectrum data in different preprocessing modes; step S4, data classification: after model construction is completed, randomly dividing the three parts of Raman spectrum data into a training set and a test set according to a ratio of 5: 1, putting the training set and the test set into a convolutional network for training, and performing data analysis after training is completed; and S5, data analysis: carrying out a contrast experiment, analyzing the advantages and disadvantages of a data preproces</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220527&amp;DB=EPODOC&amp;CC=CN&amp;NR=114544592A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220527&amp;DB=EPODOC&amp;CC=CN&amp;NR=114544592A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZENG WANDAN</creatorcontrib><creatorcontrib>HUANG ZHONGMIN</creatorcontrib><title>Intelligent Raman spectrum classification method based on convolutional neural network</title><description>The invention discloses an intelligent Raman spectrum classification method based on a convolutional neural network, and the method comprises the steps: S1, carrying out the correction of a LabRAM HR Evotion Raman spectrometer through a silicon wafer, and carrying out a Raman experiment; step S2, carrying out pretreatment on the collected Raman spectrum experiment data; s3, constructing a classification model based on a convolutional neural network, wherein the classification model is used for classifying the Raman spectrum data in different preprocessing modes; step S4, data classification: after model construction is completed, randomly dividing the three parts of Raman spectrum data into a training set and a test set according to a ratio of 5: 1, putting the training set and the test set into a convolutional network for training, and performing data analysis after training is completed; and S5, data analysis: carrying out a contrast experiment, analyzing the advantages and disadvantages of a data preproces</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNiksOAUEQQHtjIbhDOYDF0LOwlAlhYyFiOyk9NXR0V3X6w_UNcQCrl5f3xupy4EzO2RtxhhN6ZEiBTI7Fg3GYku2twWyFwVO-SwdXTNTB4Eb4Ka58GjpgKvGL_JL4mKpRjy7R7MeJmu-252a_oCAtpYCGhrNtjlWla63r9XKz-ud5A5X3Oos</recordid><startdate>20220527</startdate><enddate>20220527</enddate><creator>ZENG WANDAN</creator><creator>HUANG ZHONGMIN</creator><scope>EVB</scope></search><sort><creationdate>20220527</creationdate><title>Intelligent Raman spectrum classification method based on convolutional neural network</title><author>ZENG WANDAN ; HUANG ZHONGMIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114544592A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>ZENG WANDAN</creatorcontrib><creatorcontrib>HUANG ZHONGMIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZENG WANDAN</au><au>HUANG ZHONGMIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent Raman spectrum classification method based on convolutional neural network</title><date>2022-05-27</date><risdate>2022</risdate><abstract>The invention discloses an intelligent Raman spectrum classification method based on a convolutional neural network, and the method comprises the steps: S1, carrying out the correction of a LabRAM HR Evotion Raman spectrometer through a silicon wafer, and carrying out a Raman experiment; step S2, carrying out pretreatment on the collected Raman spectrum experiment data; s3, constructing a classification model based on a convolutional neural network, wherein the classification model is used for classifying the Raman spectrum data in different preprocessing modes; step S4, data classification: after model construction is completed, randomly dividing the three parts of Raman spectrum data into a training set and a test set according to a ratio of 5: 1, putting the training set and the test set into a convolutional network for training, and performing data analysis after training is completed; and S5, data analysis: carrying out a contrast experiment, analyzing the advantages and disadvantages of a data preproces</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114544592A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
TESTING
title Intelligent Raman spectrum classification method based on convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZENG%20WANDAN&rft.date=2022-05-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114544592A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true