Commodity sequence recommendation method based on attention mechanism

The invention discloses a commodity sequence recommendation method based on an attention mechanism, and the method comprises the steps: obtaining a commodity historical data set of a user, and carrying out the data preprocessing; a multi-head attention mechanism is used for capturing relation depend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HOU LIXIAN, DENG MING, XIE GANG, LIU CHAO, LIU QINGLONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HOU LIXIAN
DENG MING
XIE GANG
LIU CHAO
LIU QINGLONG
description The invention discloses a commodity sequence recommendation method based on an attention mechanism, and the method comprises the steps: obtaining a commodity historical data set of a user, and carrying out the data preprocessing; a multi-head attention mechanism is used for capturing relation dependence between articles in recent historical behaviors of the user, and a short-term interest preference vector of the user is obtained; and adding the similarity coefficient of the user and the item in the implicit space into the weight of the attention mechanism, and distributing different weights for the long-term interest to obtain the final representation of the long-term preference. And finally, performing weighted fusion on long and short term preferences to obtain final interest preferences of the user. The method comprises the following steps of: acquiring a correlation score value, then interacting the correlation score value with each article in a candidate set, acquiring the correlation score value in a p
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114529364A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114529364A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114529364A3</originalsourceid><addsrcrecordid>eNrjZHB1zs_NzU_JLKlUKE4tLE3NS05VKEpNBgqm5qUklmTm5ynkppZk5KcoJCUWp6YoAPmJJSWpeVCZ5IzEvMziXB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEu_sZ2hoYmpkaWxm4mhMjBoAR-Az3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Commodity sequence recommendation method based on attention mechanism</title><source>esp@cenet</source><creator>HOU LIXIAN ; DENG MING ; XIE GANG ; LIU CHAO ; LIU QINGLONG</creator><creatorcontrib>HOU LIXIAN ; DENG MING ; XIE GANG ; LIU CHAO ; LIU QINGLONG</creatorcontrib><description>The invention discloses a commodity sequence recommendation method based on an attention mechanism, and the method comprises the steps: obtaining a commodity historical data set of a user, and carrying out the data preprocessing; a multi-head attention mechanism is used for capturing relation dependence between articles in recent historical behaviors of the user, and a short-term interest preference vector of the user is obtained; and adding the similarity coefficient of the user and the item in the implicit space into the weight of the attention mechanism, and distributing different weights for the long-term interest to obtain the final representation of the long-term preference. And finally, performing weighted fusion on long and short term preferences to obtain final interest preferences of the user. The method comprises the following steps of: acquiring a correlation score value, then interacting the correlation score value with each article in a candidate set, acquiring the correlation score value in a p</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220524&amp;DB=EPODOC&amp;CC=CN&amp;NR=114529364A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220524&amp;DB=EPODOC&amp;CC=CN&amp;NR=114529364A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HOU LIXIAN</creatorcontrib><creatorcontrib>DENG MING</creatorcontrib><creatorcontrib>XIE GANG</creatorcontrib><creatorcontrib>LIU CHAO</creatorcontrib><creatorcontrib>LIU QINGLONG</creatorcontrib><title>Commodity sequence recommendation method based on attention mechanism</title><description>The invention discloses a commodity sequence recommendation method based on an attention mechanism, and the method comprises the steps: obtaining a commodity historical data set of a user, and carrying out the data preprocessing; a multi-head attention mechanism is used for capturing relation dependence between articles in recent historical behaviors of the user, and a short-term interest preference vector of the user is obtained; and adding the similarity coefficient of the user and the item in the implicit space into the weight of the attention mechanism, and distributing different weights for the long-term interest to obtain the final representation of the long-term preference. And finally, performing weighted fusion on long and short term preferences to obtain final interest preferences of the user. The method comprises the following steps of: acquiring a correlation score value, then interacting the correlation score value with each article in a candidate set, acquiring the correlation score value in a p</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB1zs_NzU_JLKlUKE4tLE3NS05VKEpNBgqm5qUklmTm5ynkppZk5KcoJCUWp6YoAPmJJSWpeVCZ5IzEvMziXB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEu_sZ2hoYmpkaWxm4mhMjBoAR-Az3Q</recordid><startdate>20220524</startdate><enddate>20220524</enddate><creator>HOU LIXIAN</creator><creator>DENG MING</creator><creator>XIE GANG</creator><creator>LIU CHAO</creator><creator>LIU QINGLONG</creator><scope>EVB</scope></search><sort><creationdate>20220524</creationdate><title>Commodity sequence recommendation method based on attention mechanism</title><author>HOU LIXIAN ; DENG MING ; XIE GANG ; LIU CHAO ; LIU QINGLONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114529364A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>HOU LIXIAN</creatorcontrib><creatorcontrib>DENG MING</creatorcontrib><creatorcontrib>XIE GANG</creatorcontrib><creatorcontrib>LIU CHAO</creatorcontrib><creatorcontrib>LIU QINGLONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HOU LIXIAN</au><au>DENG MING</au><au>XIE GANG</au><au>LIU CHAO</au><au>LIU QINGLONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Commodity sequence recommendation method based on attention mechanism</title><date>2022-05-24</date><risdate>2022</risdate><abstract>The invention discloses a commodity sequence recommendation method based on an attention mechanism, and the method comprises the steps: obtaining a commodity historical data set of a user, and carrying out the data preprocessing; a multi-head attention mechanism is used for capturing relation dependence between articles in recent historical behaviors of the user, and a short-term interest preference vector of the user is obtained; and adding the similarity coefficient of the user and the item in the implicit space into the weight of the attention mechanism, and distributing different weights for the long-term interest to obtain the final representation of the long-term preference. And finally, performing weighted fusion on long and short term preferences to obtain final interest preferences of the user. The method comprises the following steps of: acquiring a correlation score value, then interacting the correlation score value with each article in a candidate set, acquiring the correlation score value in a p</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114529364A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Commodity sequence recommendation method based on attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HOU%20LIXIAN&rft.date=2022-05-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114529364A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true