Scenic area passenger flow real-time prediction method based on tourist time-space behavior pattern mining

The invention provides a scenic spot passenger flow real-time prediction method based on tourist time-space behavior pattern mining. The scenic spot passenger flow real-time prediction method comprises the following steps: S1, real-time collection of big data: carrying out real-time collection on ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG JIANYING, YU HAITAO, TAN LIGUO, WU ZHONGJUN, HE JIANWU, YAO JIANSHENG, ZHOU MAOJIE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG JIANYING
YU HAITAO
TAN LIGUO
WU ZHONGJUN
HE JIANWU
YAO JIANSHENG
ZHOU MAOJIE
description The invention provides a scenic spot passenger flow real-time prediction method based on tourist time-space behavior pattern mining. The scenic spot passenger flow real-time prediction method comprises the following steps: S1, real-time collection of big data: carrying out real-time collection on basic information, time-space behavior data, traffic condition data, meteorological data and destination festival data of tourists; s2, mining a space-time behavior mode of tourists and constructing a space reachability model between scenic spots; s3, predicting the passenger flow quantity of each scenic spot in the next prediction period by using the model constructed in the step S2 according to the spatial and temporal distribution of tourists in each scenic spot at the current moment of the destination, tourist movement directivity information and traffic condition data; and S4, performing iterative updating on the model constructed in the step S2 according to tourist spatio-temporal data generated in real time in
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114519454A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114519454A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114519454A3</originalsourceid><addsrcrecordid>eNqNjDEOgkAURGksjHqH7wEoiFBYGqKxstGefJYBvoHdze5Xr-9qPIDVZCbvzTK7Xw2sGOIAJs8xwg4I1E_uRWmacpUZ5AM6MSrO0gwdXUctR3SUurpHkKj04fLo2YBajPwUF9KfKkJyxIod1tmi5yli88tVtj0db_U5h3cNvqqFNvWlKMqq2JdVedj9w7wBnTBBQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Scenic area passenger flow real-time prediction method based on tourist time-space behavior pattern mining</title><source>esp@cenet</source><creator>WANG JIANYING ; YU HAITAO ; TAN LIGUO ; WU ZHONGJUN ; HE JIANWU ; YAO JIANSHENG ; ZHOU MAOJIE</creator><creatorcontrib>WANG JIANYING ; YU HAITAO ; TAN LIGUO ; WU ZHONGJUN ; HE JIANWU ; YAO JIANSHENG ; ZHOU MAOJIE</creatorcontrib><description>The invention provides a scenic spot passenger flow real-time prediction method based on tourist time-space behavior pattern mining. The scenic spot passenger flow real-time prediction method comprises the following steps: S1, real-time collection of big data: carrying out real-time collection on basic information, time-space behavior data, traffic condition data, meteorological data and destination festival data of tourists; s2, mining a space-time behavior mode of tourists and constructing a space reachability model between scenic spots; s3, predicting the passenger flow quantity of each scenic spot in the next prediction period by using the model constructed in the step S2 according to the spatial and temporal distribution of tourists in each scenic spot at the current moment of the destination, tourist movement directivity information and traffic condition data; and S4, performing iterative updating on the model constructed in the step S2 according to tourist spatio-temporal data generated in real time in</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220520&amp;DB=EPODOC&amp;CC=CN&amp;NR=114519454A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220520&amp;DB=EPODOC&amp;CC=CN&amp;NR=114519454A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG JIANYING</creatorcontrib><creatorcontrib>YU HAITAO</creatorcontrib><creatorcontrib>TAN LIGUO</creatorcontrib><creatorcontrib>WU ZHONGJUN</creatorcontrib><creatorcontrib>HE JIANWU</creatorcontrib><creatorcontrib>YAO JIANSHENG</creatorcontrib><creatorcontrib>ZHOU MAOJIE</creatorcontrib><title>Scenic area passenger flow real-time prediction method based on tourist time-space behavior pattern mining</title><description>The invention provides a scenic spot passenger flow real-time prediction method based on tourist time-space behavior pattern mining. The scenic spot passenger flow real-time prediction method comprises the following steps: S1, real-time collection of big data: carrying out real-time collection on basic information, time-space behavior data, traffic condition data, meteorological data and destination festival data of tourists; s2, mining a space-time behavior mode of tourists and constructing a space reachability model between scenic spots; s3, predicting the passenger flow quantity of each scenic spot in the next prediction period by using the model constructed in the step S2 according to the spatial and temporal distribution of tourists in each scenic spot at the current moment of the destination, tourist movement directivity information and traffic condition data; and S4, performing iterative updating on the model constructed in the step S2 according to tourist spatio-temporal data generated in real time in</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOgkAURGksjHqH7wEoiFBYGqKxstGefJYBvoHdze5Xr-9qPIDVZCbvzTK7Xw2sGOIAJs8xwg4I1E_uRWmacpUZ5AM6MSrO0gwdXUctR3SUurpHkKj04fLo2YBajPwUF9KfKkJyxIod1tmi5yli88tVtj0db_U5h3cNvqqFNvWlKMqq2JdVedj9w7wBnTBBQw</recordid><startdate>20220520</startdate><enddate>20220520</enddate><creator>WANG JIANYING</creator><creator>YU HAITAO</creator><creator>TAN LIGUO</creator><creator>WU ZHONGJUN</creator><creator>HE JIANWU</creator><creator>YAO JIANSHENG</creator><creator>ZHOU MAOJIE</creator><scope>EVB</scope></search><sort><creationdate>20220520</creationdate><title>Scenic area passenger flow real-time prediction method based on tourist time-space behavior pattern mining</title><author>WANG JIANYING ; YU HAITAO ; TAN LIGUO ; WU ZHONGJUN ; HE JIANWU ; YAO JIANSHENG ; ZHOU MAOJIE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114519454A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG JIANYING</creatorcontrib><creatorcontrib>YU HAITAO</creatorcontrib><creatorcontrib>TAN LIGUO</creatorcontrib><creatorcontrib>WU ZHONGJUN</creatorcontrib><creatorcontrib>HE JIANWU</creatorcontrib><creatorcontrib>YAO JIANSHENG</creatorcontrib><creatorcontrib>ZHOU MAOJIE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG JIANYING</au><au>YU HAITAO</au><au>TAN LIGUO</au><au>WU ZHONGJUN</au><au>HE JIANWU</au><au>YAO JIANSHENG</au><au>ZHOU MAOJIE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Scenic area passenger flow real-time prediction method based on tourist time-space behavior pattern mining</title><date>2022-05-20</date><risdate>2022</risdate><abstract>The invention provides a scenic spot passenger flow real-time prediction method based on tourist time-space behavior pattern mining. The scenic spot passenger flow real-time prediction method comprises the following steps: S1, real-time collection of big data: carrying out real-time collection on basic information, time-space behavior data, traffic condition data, meteorological data and destination festival data of tourists; s2, mining a space-time behavior mode of tourists and constructing a space reachability model between scenic spots; s3, predicting the passenger flow quantity of each scenic spot in the next prediction period by using the model constructed in the step S2 according to the spatial and temporal distribution of tourists in each scenic spot at the current moment of the destination, tourist movement directivity information and traffic condition data; and S4, performing iterative updating on the model constructed in the step S2 according to tourist spatio-temporal data generated in real time in</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114519454A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Scenic area passenger flow real-time prediction method based on tourist time-space behavior pattern mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T07%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20JIANYING&rft.date=2022-05-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114519454A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true