Shale brittleness index prediction method based on improved KNN algorithm

The invention discloses a shale brittleness index prediction method based on an improved KNN algorithm. The method comprises the following steps: determining a training well and a test well; performing correlation analysis and comparison on each logging parameter in the training well and the brittle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LYU XIAONAN, LI YONG, DUAN ZHENGXIN, HUANG KAIXING, WU CHAORONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LYU XIAONAN
LI YONG
DUAN ZHENGXIN
HUANG KAIXING
WU CHAORONG
description The invention discloses a shale brittleness index prediction method based on an improved KNN algorithm. The method comprises the following steps: determining a training well and a test well; performing correlation analysis and comparison on each logging parameter in the training well and the brittleness index, selecting three logging parameters with first three absolute values of correlation coefficients as independent variables, and taking the brittleness index as a dependent variable; constructing a training sample and a training database by using data in the training well; iteratively optimizing the training database by using a KNN algorithm to obtain an optimal training database; taking the data in the optimal training database as training data, taking the corresponding data in the test well and the training well as test data, and obtaining an optimal K value by adopting a cross validation method; and establishing a KNN model by using the optimal training database and the optimal K value to obtain a predi
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114492627A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114492627A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114492627A3</originalsourceid><addsrcrecordid>eNrjZPAMzkjMSVVIKsosKclJzUstLlbIzEtJrVAoKEpNyUwuyczPU8hNLcnIT1FISixOTVEA8jNzC4ryy4Bsbz8_hcSc9Hyg5oxcHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmAw0viTe2c_Q0MTE0sjMyNzRmBg1AOn4NK4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Shale brittleness index prediction method based on improved KNN algorithm</title><source>esp@cenet</source><creator>LYU XIAONAN ; LI YONG ; DUAN ZHENGXIN ; HUANG KAIXING ; WU CHAORONG</creator><creatorcontrib>LYU XIAONAN ; LI YONG ; DUAN ZHENGXIN ; HUANG KAIXING ; WU CHAORONG</creatorcontrib><description>The invention discloses a shale brittleness index prediction method based on an improved KNN algorithm. The method comprises the following steps: determining a training well and a test well; performing correlation analysis and comparison on each logging parameter in the training well and the brittleness index, selecting three logging parameters with first three absolute values of correlation coefficients as independent variables, and taking the brittleness index as a dependent variable; constructing a training sample and a training database by using data in the training well; iteratively optimizing the training database by using a KNN algorithm to obtain an optimal training database; taking the data in the optimal training database as training data, taking the corresponding data in the test well and the training well as test data, and obtaining an optimal K value by adopting a cross validation method; and establishing a KNN model by using the optimal training database and the optimal K value to obtain a predi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; HANDLING RECORD CARRIERS ; MEASURING ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220513&amp;DB=EPODOC&amp;CC=CN&amp;NR=114492627A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220513&amp;DB=EPODOC&amp;CC=CN&amp;NR=114492627A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LYU XIAONAN</creatorcontrib><creatorcontrib>LI YONG</creatorcontrib><creatorcontrib>DUAN ZHENGXIN</creatorcontrib><creatorcontrib>HUANG KAIXING</creatorcontrib><creatorcontrib>WU CHAORONG</creatorcontrib><title>Shale brittleness index prediction method based on improved KNN algorithm</title><description>The invention discloses a shale brittleness index prediction method based on an improved KNN algorithm. The method comprises the following steps: determining a training well and a test well; performing correlation analysis and comparison on each logging parameter in the training well and the brittleness index, selecting three logging parameters with first three absolute values of correlation coefficients as independent variables, and taking the brittleness index as a dependent variable; constructing a training sample and a training database by using data in the training well; iteratively optimizing the training database by using a KNN algorithm to obtain an optimal training database; taking the data in the optimal training database as training data, taking the corresponding data in the test well and the training well as test data, and obtaining an optimal K value by adopting a cross validation method; and establishing a KNN model by using the optimal training database and the optimal K value to obtain a predi</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>HANDLING RECORD CARRIERS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAMzkjMSVVIKsosKclJzUstLlbIzEtJrVAoKEpNyUwuyczPU8hNLcnIT1FISixOTVEA8jNzC4ryy4Bsbz8_hcSc9Hyg5oxcHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmAw0viTe2c_Q0MTE0sjMyNzRmBg1AOn4NK4</recordid><startdate>20220513</startdate><enddate>20220513</enddate><creator>LYU XIAONAN</creator><creator>LI YONG</creator><creator>DUAN ZHENGXIN</creator><creator>HUANG KAIXING</creator><creator>WU CHAORONG</creator><scope>EVB</scope></search><sort><creationdate>20220513</creationdate><title>Shale brittleness index prediction method based on improved KNN algorithm</title><author>LYU XIAONAN ; LI YONG ; DUAN ZHENGXIN ; HUANG KAIXING ; WU CHAORONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114492627A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>HANDLING RECORD CARRIERS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LYU XIAONAN</creatorcontrib><creatorcontrib>LI YONG</creatorcontrib><creatorcontrib>DUAN ZHENGXIN</creatorcontrib><creatorcontrib>HUANG KAIXING</creatorcontrib><creatorcontrib>WU CHAORONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LYU XIAONAN</au><au>LI YONG</au><au>DUAN ZHENGXIN</au><au>HUANG KAIXING</au><au>WU CHAORONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Shale brittleness index prediction method based on improved KNN algorithm</title><date>2022-05-13</date><risdate>2022</risdate><abstract>The invention discloses a shale brittleness index prediction method based on an improved KNN algorithm. The method comprises the following steps: determining a training well and a test well; performing correlation analysis and comparison on each logging parameter in the training well and the brittleness index, selecting three logging parameters with first three absolute values of correlation coefficients as independent variables, and taking the brittleness index as a dependent variable; constructing a training sample and a training database by using data in the training well; iteratively optimizing the training database by using a KNN algorithm to obtain an optimal training database; taking the data in the optimal training database as training data, taking the corresponding data in the test well and the training well as test data, and obtaining an optimal K value by adopting a cross validation method; and establishing a KNN model by using the optimal training database and the optimal K value to obtain a predi</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114492627A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DETECTING MASSES OR OBJECTS
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
HANDLING RECORD CARRIERS
MEASURING
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
TESTING
title Shale brittleness index prediction method based on improved KNN algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LYU%20XIAONAN&rft.date=2022-05-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114492627A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true