Cross-modal visual tracking method and device based on adaptive convolution

The invention discloses a cross-modal visual tracking method and device based on self-adaptive convolution, and belongs to the technical field of computer vision, and the method comprises the steps: inputting a pair of registered multi-modal images, generating a weight tensor corresponding to the si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIA YAQING, CAI XIANCHEN, LI CHENGLONG, ZHU QIWEN, TANG JIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JIA YAQING
CAI XIANCHEN
LI CHENGLONG
ZHU QIWEN
TANG JIN
description The invention discloses a cross-modal visual tracking method and device based on self-adaptive convolution, and belongs to the technical field of computer vision, and the method comprises the steps: inputting a pair of registered multi-modal images, generating a weight tensor corresponding to the size of a feature graph after each layer of convolution through a self-adaptive convolution module, and generating a weight tensor corresponding to the size of a feature graph; self-adaptive fusion is carried out on input among different modals pixel by pixel, self-adaptive fusion of two modal features is carried out again on a fusion result and a single input modal feature, and cross-modal information interaction and single modal information enhancement are achieved; fine-tuning the fully connected layer according to a first frame collection sample of each video to cope with an instance-specific challenge; and finally, sending to the last layer of the full connection layer for binary classification operation to obta
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114445462A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114445462A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114445462A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMAMAuDAj4g3lAh0JgRxEICYmJvTKxgYjUjuo074eBBzDdcvPm4kc1awclTFCjTV_KiOEd5QkDl5cSoBAQ1xgY7mhMoAJImEusDEGlappKVFk2swcm49XPRbM-HW_-3HLWni1jYOHS-2vXOed2br85bP85H2NcNYk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cross-modal visual tracking method and device based on adaptive convolution</title><source>esp@cenet</source><creator>JIA YAQING ; CAI XIANCHEN ; LI CHENGLONG ; ZHU QIWEN ; TANG JIN</creator><creatorcontrib>JIA YAQING ; CAI XIANCHEN ; LI CHENGLONG ; ZHU QIWEN ; TANG JIN</creatorcontrib><description>The invention discloses a cross-modal visual tracking method and device based on self-adaptive convolution, and belongs to the technical field of computer vision, and the method comprises the steps: inputting a pair of registered multi-modal images, generating a weight tensor corresponding to the size of a feature graph after each layer of convolution through a self-adaptive convolution module, and generating a weight tensor corresponding to the size of a feature graph; self-adaptive fusion is carried out on input among different modals pixel by pixel, self-adaptive fusion of two modal features is carried out again on a fusion result and a single input modal feature, and cross-modal information interaction and single modal information enhancement are achieved; fine-tuning the fully connected layer according to a first frame collection sample of each video to cope with an instance-specific challenge; and finally, sending to the last layer of the full connection layer for binary classification operation to obta</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220506&amp;DB=EPODOC&amp;CC=CN&amp;NR=114445462A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220506&amp;DB=EPODOC&amp;CC=CN&amp;NR=114445462A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIA YAQING</creatorcontrib><creatorcontrib>CAI XIANCHEN</creatorcontrib><creatorcontrib>LI CHENGLONG</creatorcontrib><creatorcontrib>ZHU QIWEN</creatorcontrib><creatorcontrib>TANG JIN</creatorcontrib><title>Cross-modal visual tracking method and device based on adaptive convolution</title><description>The invention discloses a cross-modal visual tracking method and device based on self-adaptive convolution, and belongs to the technical field of computer vision, and the method comprises the steps: inputting a pair of registered multi-modal images, generating a weight tensor corresponding to the size of a feature graph after each layer of convolution through a self-adaptive convolution module, and generating a weight tensor corresponding to the size of a feature graph; self-adaptive fusion is carried out on input among different modals pixel by pixel, self-adaptive fusion of two modal features is carried out again on a fusion result and a single input modal feature, and cross-modal information interaction and single modal information enhancement are achieved; fine-tuning the fully connected layer according to a first frame collection sample of each video to cope with an instance-specific challenge; and finally, sending to the last layer of the full connection layer for binary classification operation to obta</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMAMAuDAj4g3lAh0JgRxEICYmJvTKxgYjUjuo074eBBzDdcvPm4kc1awclTFCjTV_KiOEd5QkDl5cSoBAQ1xgY7mhMoAJImEusDEGlappKVFk2swcm49XPRbM-HW_-3HLWni1jYOHS-2vXOed2br85bP85H2NcNYk</recordid><startdate>20220506</startdate><enddate>20220506</enddate><creator>JIA YAQING</creator><creator>CAI XIANCHEN</creator><creator>LI CHENGLONG</creator><creator>ZHU QIWEN</creator><creator>TANG JIN</creator><scope>EVB</scope></search><sort><creationdate>20220506</creationdate><title>Cross-modal visual tracking method and device based on adaptive convolution</title><author>JIA YAQING ; CAI XIANCHEN ; LI CHENGLONG ; ZHU QIWEN ; TANG JIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114445462A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>JIA YAQING</creatorcontrib><creatorcontrib>CAI XIANCHEN</creatorcontrib><creatorcontrib>LI CHENGLONG</creatorcontrib><creatorcontrib>ZHU QIWEN</creatorcontrib><creatorcontrib>TANG JIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIA YAQING</au><au>CAI XIANCHEN</au><au>LI CHENGLONG</au><au>ZHU QIWEN</au><au>TANG JIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cross-modal visual tracking method and device based on adaptive convolution</title><date>2022-05-06</date><risdate>2022</risdate><abstract>The invention discloses a cross-modal visual tracking method and device based on self-adaptive convolution, and belongs to the technical field of computer vision, and the method comprises the steps: inputting a pair of registered multi-modal images, generating a weight tensor corresponding to the size of a feature graph after each layer of convolution through a self-adaptive convolution module, and generating a weight tensor corresponding to the size of a feature graph; self-adaptive fusion is carried out on input among different modals pixel by pixel, self-adaptive fusion of two modal features is carried out again on a fusion result and a single input modal feature, and cross-modal information interaction and single modal information enhancement are achieved; fine-tuning the fully connected layer according to a first frame collection sample of each video to cope with an instance-specific challenge; and finally, sending to the last layer of the full connection layer for binary classification operation to obta</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114445462A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Cross-modal visual tracking method and device based on adaptive convolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIA%20YAQING&rft.date=2022-05-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114445462A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true