Intelligent landslide prediction method based on tangent angle and various landslide models
According to the intelligent landslide prediction method based on the tangent angle and the various landslide models, the danger degree of the schedule landslide can be automatically judged only by inputting displacement-time data of the landslide monitoring result, and the occurrence time of the la...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG ZHIJIA LIU WENXUAN JIN YANG WANG YUE DAI YINGCHAO |
description | According to the intelligent landslide prediction method based on the tangent angle and the various landslide models, the danger degree of the schedule landslide can be automatically judged only by inputting displacement-time data of the landslide monitoring result, and the occurrence time of the landslide can be predicted by integrating various landslide prediction models. Comprising the following steps: performing Kalman filtering on landslide displacement and time results, converting the filtered displacement and displacement in a time curve, and dividing the converted displacement and displacement by the speed of a constant-speed deformation stage to obtain a longitudinal coordinate value which is the same as the time dimension after conversion; acquiring a curve tangent angle in the current monitoring time period according to the vertical coordinate value, and judging the development stage of the current landslide according to the curve tangent angle; and according to the filtered displacement and time c |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114444258A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114444258A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114444258A3</originalsourceid><addsrcrecordid>eNrjZIj2zCtJzcnJTE_NK1HIScxLKc7JTElVKChKTclMLsnMz1PITS3JyE9RSEosTk1RAPJLEvPAioFUTiqQTFEoSyzKzC8tRtKem5-SmlPMw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk1PzUkvinf0MDU2AwMjUwtGYGDUAo5k7yQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent landslide prediction method based on tangent angle and various landslide models</title><source>esp@cenet</source><creator>ZHANG ZHIJIA ; LIU WENXUAN ; JIN YANG ; WANG YUE ; DAI YINGCHAO</creator><creatorcontrib>ZHANG ZHIJIA ; LIU WENXUAN ; JIN YANG ; WANG YUE ; DAI YINGCHAO</creatorcontrib><description>According to the intelligent landslide prediction method based on the tangent angle and the various landslide models, the danger degree of the schedule landslide can be automatically judged only by inputting displacement-time data of the landslide monitoring result, and the occurrence time of the landslide can be predicted by integrating various landslide prediction models. Comprising the following steps: performing Kalman filtering on landslide displacement and time results, converting the filtered displacement and displacement in a time curve, and dividing the converted displacement and displacement by the speed of a constant-speed deformation stage to obtain a longitudinal coordinate value which is the same as the time dimension after conversion; acquiring a curve tangent angle in the current monitoring time period according to the vertical coordinate value, and judging the development stage of the current landslide according to the curve tangent angle; and according to the filtered displacement and time c</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220506&DB=EPODOC&CC=CN&NR=114444258A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220506&DB=EPODOC&CC=CN&NR=114444258A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG ZHIJIA</creatorcontrib><creatorcontrib>LIU WENXUAN</creatorcontrib><creatorcontrib>JIN YANG</creatorcontrib><creatorcontrib>WANG YUE</creatorcontrib><creatorcontrib>DAI YINGCHAO</creatorcontrib><title>Intelligent landslide prediction method based on tangent angle and various landslide models</title><description>According to the intelligent landslide prediction method based on the tangent angle and the various landslide models, the danger degree of the schedule landslide can be automatically judged only by inputting displacement-time data of the landslide monitoring result, and the occurrence time of the landslide can be predicted by integrating various landslide prediction models. Comprising the following steps: performing Kalman filtering on landslide displacement and time results, converting the filtered displacement and displacement in a time curve, and dividing the converted displacement and displacement by the speed of a constant-speed deformation stage to obtain a longitudinal coordinate value which is the same as the time dimension after conversion; acquiring a curve tangent angle in the current monitoring time period according to the vertical coordinate value, and judging the development stage of the current landslide according to the curve tangent angle; and according to the filtered displacement and time c</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIj2zCtJzcnJTE_NK1HIScxLKc7JTElVKChKTclMLsnMz1PITS3JyE9RSEosTk1RAPJLEvPAioFUTiqQTFEoSyzKzC8tRtKem5-SmlPMw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk1PzUkvinf0MDU2AwMjUwtGYGDUAo5k7yQ</recordid><startdate>20220506</startdate><enddate>20220506</enddate><creator>ZHANG ZHIJIA</creator><creator>LIU WENXUAN</creator><creator>JIN YANG</creator><creator>WANG YUE</creator><creator>DAI YINGCHAO</creator><scope>EVB</scope></search><sort><creationdate>20220506</creationdate><title>Intelligent landslide prediction method based on tangent angle and various landslide models</title><author>ZHANG ZHIJIA ; LIU WENXUAN ; JIN YANG ; WANG YUE ; DAI YINGCHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114444258A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG ZHIJIA</creatorcontrib><creatorcontrib>LIU WENXUAN</creatorcontrib><creatorcontrib>JIN YANG</creatorcontrib><creatorcontrib>WANG YUE</creatorcontrib><creatorcontrib>DAI YINGCHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG ZHIJIA</au><au>LIU WENXUAN</au><au>JIN YANG</au><au>WANG YUE</au><au>DAI YINGCHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent landslide prediction method based on tangent angle and various landslide models</title><date>2022-05-06</date><risdate>2022</risdate><abstract>According to the intelligent landslide prediction method based on the tangent angle and the various landslide models, the danger degree of the schedule landslide can be automatically judged only by inputting displacement-time data of the landslide monitoring result, and the occurrence time of the landslide can be predicted by integrating various landslide prediction models. Comprising the following steps: performing Kalman filtering on landslide displacement and time results, converting the filtered displacement and displacement in a time curve, and dividing the converted displacement and displacement by the speed of a constant-speed deformation stage to obtain a longitudinal coordinate value which is the same as the time dimension after conversion; acquiring a curve tangent angle in the current monitoring time period according to the vertical coordinate value, and judging the development stage of the current landslide according to the curve tangent angle; and according to the filtered displacement and time c</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114444258A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Intelligent landslide prediction method based on tangent angle and various landslide models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20ZHIJIA&rft.date=2022-05-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114444258A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |