Neural network architecture search method, system and device and readable storage medium

The invention discloses a neural network architecture search method, system and device and a readable storage medium, and the method comprises the steps: initializing the related parameters of a DARTS network, inputting an image training set into the initialized DARTS network, calculating a loss val...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG CHAOYONG, XU YIFEI, WEI PINGPING, ZHANG YUEWAN, ZHU LI, XU MINGJIE, WANG ZHENGYANG, ZHANG YANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG CHAOYONG
XU YIFEI
WEI PINGPING
ZHANG YUEWAN
ZHU LI
XU MINGJIE
WANG ZHENGYANG
ZHANG YANG
description The invention discloses a neural network architecture search method, system and device and a readable storage medium, and the method comprises the steps: initializing the related parameters of a DARTS network, inputting an image training set into the initialized DARTS network, calculating a loss value according to a target function, calculating the network loss change through employing a second-order Taylor expansion according to gradient information, and obtaining the network loss change. The index saliency is calculated by using a grading index based on synaptic saliency, a connection sensitivity index is adopted to search a neural network architecture to indicate the importance of operation, microarchitecture structure search is defined as network pruning during initialization, operation saliency measurement is adopted in the initialization of the network pruning, and experimental results show that the operation significance of the neural network architecture is improved. The framework is a promising and r
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114429197A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114429197A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114429197A3</originalsourceid><addsrcrecordid>eNrjZIjwSy0tSsxRyEstKc8vylZILErOyCxJTS4pLUpVKE4FcRVyU0sy8lN0FIori0tScxUS81IUUlLLMpNTwcyi1MSUxKQcoOqS_KLE9FSg8pTM0lweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnAq0M97Zz9DQxMTI0tDS3NGYGDUAtBg6Yw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neural network architecture search method, system and device and readable storage medium</title><source>esp@cenet</source><creator>WANG CHAOYONG ; XU YIFEI ; WEI PINGPING ; ZHANG YUEWAN ; ZHU LI ; XU MINGJIE ; WANG ZHENGYANG ; ZHANG YANG</creator><creatorcontrib>WANG CHAOYONG ; XU YIFEI ; WEI PINGPING ; ZHANG YUEWAN ; ZHU LI ; XU MINGJIE ; WANG ZHENGYANG ; ZHANG YANG</creatorcontrib><description>The invention discloses a neural network architecture search method, system and device and a readable storage medium, and the method comprises the steps: initializing the related parameters of a DARTS network, inputting an image training set into the initialized DARTS network, calculating a loss value according to a target function, calculating the network loss change through employing a second-order Taylor expansion according to gradient information, and obtaining the network loss change. The index saliency is calculated by using a grading index based on synaptic saliency, a connection sensitivity index is adopted to search a neural network architecture to indicate the importance of operation, microarchitecture structure search is defined as network pruning during initialization, operation saliency measurement is adopted in the initialization of the network pruning, and experimental results show that the operation significance of the neural network architecture is improved. The framework is a promising and r</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220503&amp;DB=EPODOC&amp;CC=CN&amp;NR=114429197A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220503&amp;DB=EPODOC&amp;CC=CN&amp;NR=114429197A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG CHAOYONG</creatorcontrib><creatorcontrib>XU YIFEI</creatorcontrib><creatorcontrib>WEI PINGPING</creatorcontrib><creatorcontrib>ZHANG YUEWAN</creatorcontrib><creatorcontrib>ZHU LI</creatorcontrib><creatorcontrib>XU MINGJIE</creatorcontrib><creatorcontrib>WANG ZHENGYANG</creatorcontrib><creatorcontrib>ZHANG YANG</creatorcontrib><title>Neural network architecture search method, system and device and readable storage medium</title><description>The invention discloses a neural network architecture search method, system and device and a readable storage medium, and the method comprises the steps: initializing the related parameters of a DARTS network, inputting an image training set into the initialized DARTS network, calculating a loss value according to a target function, calculating the network loss change through employing a second-order Taylor expansion according to gradient information, and obtaining the network loss change. The index saliency is calculated by using a grading index based on synaptic saliency, a connection sensitivity index is adopted to search a neural network architecture to indicate the importance of operation, microarchitecture structure search is defined as network pruning during initialization, operation saliency measurement is adopted in the initialization of the network pruning, and experimental results show that the operation significance of the neural network architecture is improved. The framework is a promising and r</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIjwSy0tSsxRyEstKc8vylZILErOyCxJTS4pLUpVKE4FcRVyU0sy8lN0FIori0tScxUS81IUUlLLMpNTwcyi1MSUxKQcoOqS_KLE9FSg8pTM0lweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnAq0M97Zz9DQxMTI0tDS3NGYGDUAtBg6Yw</recordid><startdate>20220503</startdate><enddate>20220503</enddate><creator>WANG CHAOYONG</creator><creator>XU YIFEI</creator><creator>WEI PINGPING</creator><creator>ZHANG YUEWAN</creator><creator>ZHU LI</creator><creator>XU MINGJIE</creator><creator>WANG ZHENGYANG</creator><creator>ZHANG YANG</creator><scope>EVB</scope></search><sort><creationdate>20220503</creationdate><title>Neural network architecture search method, system and device and readable storage medium</title><author>WANG CHAOYONG ; XU YIFEI ; WEI PINGPING ; ZHANG YUEWAN ; ZHU LI ; XU MINGJIE ; WANG ZHENGYANG ; ZHANG YANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114429197A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG CHAOYONG</creatorcontrib><creatorcontrib>XU YIFEI</creatorcontrib><creatorcontrib>WEI PINGPING</creatorcontrib><creatorcontrib>ZHANG YUEWAN</creatorcontrib><creatorcontrib>ZHU LI</creatorcontrib><creatorcontrib>XU MINGJIE</creatorcontrib><creatorcontrib>WANG ZHENGYANG</creatorcontrib><creatorcontrib>ZHANG YANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG CHAOYONG</au><au>XU YIFEI</au><au>WEI PINGPING</au><au>ZHANG YUEWAN</au><au>ZHU LI</au><au>XU MINGJIE</au><au>WANG ZHENGYANG</au><au>ZHANG YANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neural network architecture search method, system and device and readable storage medium</title><date>2022-05-03</date><risdate>2022</risdate><abstract>The invention discloses a neural network architecture search method, system and device and a readable storage medium, and the method comprises the steps: initializing the related parameters of a DARTS network, inputting an image training set into the initialized DARTS network, calculating a loss value according to a target function, calculating the network loss change through employing a second-order Taylor expansion according to gradient information, and obtaining the network loss change. The index saliency is calculated by using a grading index based on synaptic saliency, a connection sensitivity index is adopted to search a neural network architecture to indicate the importance of operation, microarchitecture structure search is defined as network pruning during initialization, operation saliency measurement is adopted in the initialization of the network pruning, and experimental results show that the operation significance of the neural network architecture is improved. The framework is a promising and r</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114429197A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Neural network architecture search method, system and device and readable storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20CHAOYONG&rft.date=2022-05-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114429197A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true