Test paper structure analysis method based on span information and local attention

The invention discloses a test paper structure analysis method based on span information and local attention, and the method comprises the following steps: obtaining an electronic test paper, and preprocessing multivariate data in the electronic test paper into a unified branch structural text; the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MA ZHENYUAN, SHANG XICHEN, ZHENG YANKUI, MA QIANLI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MA ZHENYUAN
SHANG XICHEN
ZHENG YANKUI
MA QIANLI
description The invention discloses a test paper structure analysis method based on span information and local attention, and the method comprises the following steps: obtaining an electronic test paper, and preprocessing multivariate data in the electronic test paper into a unified branch structural text; the method comprises the following steps: firstly, extracting semantic features of each row of test paper through a large-scale pre-training model, and modeling context information; then utilizing supervision attention based on span information and an auxiliary task based on span classification to explicitly model segmentation structure information of the test paper and feature information based on span, and splitting the test paper into different types of big question segments and corresponding types through a classifier; and further processing each obtained big question segment, splitting the big question segments into small questions by using a classifier and various previously extracted feature information, and ret
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114429118A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114429118A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114429118A3</originalsourceid><addsrcrecordid>eNqNjDEKAjEQANNYiPqH9QEW0Su0lEOxspDrjzXZw0BuN2T3Cn_vCT7AamAYZukeHalBwUIV1OoUbKoEyJjfmhRGspdEeKJSBGHQggyJB6kjWpoFcoQsATOgGfHXrd1iwKy0-XHlttdL1952VKSn-RCIyfr27n3T7E_eH8-Hf5oPSis4bQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Test paper structure analysis method based on span information and local attention</title><source>esp@cenet</source><creator>MA ZHENYUAN ; SHANG XICHEN ; ZHENG YANKUI ; MA QIANLI</creator><creatorcontrib>MA ZHENYUAN ; SHANG XICHEN ; ZHENG YANKUI ; MA QIANLI</creatorcontrib><description>The invention discloses a test paper structure analysis method based on span information and local attention, and the method comprises the following steps: obtaining an electronic test paper, and preprocessing multivariate data in the electronic test paper into a unified branch structural text; the method comprises the following steps: firstly, extracting semantic features of each row of test paper through a large-scale pre-training model, and modeling context information; then utilizing supervision attention based on span information and an auxiliary task based on span classification to explicitly model segmentation structure information of the test paper and feature information based on span, and splitting the test paper into different types of big question segments and corresponding types through a classifier; and further processing each obtained big question segment, splitting the big question segments into small questions by using a classifier and various previously extracted feature information, and ret</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220503&amp;DB=EPODOC&amp;CC=CN&amp;NR=114429118A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220503&amp;DB=EPODOC&amp;CC=CN&amp;NR=114429118A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA ZHENYUAN</creatorcontrib><creatorcontrib>SHANG XICHEN</creatorcontrib><creatorcontrib>ZHENG YANKUI</creatorcontrib><creatorcontrib>MA QIANLI</creatorcontrib><title>Test paper structure analysis method based on span information and local attention</title><description>The invention discloses a test paper structure analysis method based on span information and local attention, and the method comprises the following steps: obtaining an electronic test paper, and preprocessing multivariate data in the electronic test paper into a unified branch structural text; the method comprises the following steps: firstly, extracting semantic features of each row of test paper through a large-scale pre-training model, and modeling context information; then utilizing supervision attention based on span information and an auxiliary task based on span classification to explicitly model segmentation structure information of the test paper and feature information based on span, and splitting the test paper into different types of big question segments and corresponding types through a classifier; and further processing each obtained big question segment, splitting the big question segments into small questions by using a classifier and various previously extracted feature information, and ret</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKAjEQANNYiPqH9QEW0Su0lEOxspDrjzXZw0BuN2T3Cn_vCT7AamAYZukeHalBwUIV1OoUbKoEyJjfmhRGspdEeKJSBGHQggyJB6kjWpoFcoQsATOgGfHXrd1iwKy0-XHlttdL1952VKSn-RCIyfr27n3T7E_eH8-Hf5oPSis4bQ</recordid><startdate>20220503</startdate><enddate>20220503</enddate><creator>MA ZHENYUAN</creator><creator>SHANG XICHEN</creator><creator>ZHENG YANKUI</creator><creator>MA QIANLI</creator><scope>EVB</scope></search><sort><creationdate>20220503</creationdate><title>Test paper structure analysis method based on span information and local attention</title><author>MA ZHENYUAN ; SHANG XICHEN ; ZHENG YANKUI ; MA QIANLI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114429118A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MA ZHENYUAN</creatorcontrib><creatorcontrib>SHANG XICHEN</creatorcontrib><creatorcontrib>ZHENG YANKUI</creatorcontrib><creatorcontrib>MA QIANLI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA ZHENYUAN</au><au>SHANG XICHEN</au><au>ZHENG YANKUI</au><au>MA QIANLI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Test paper structure analysis method based on span information and local attention</title><date>2022-05-03</date><risdate>2022</risdate><abstract>The invention discloses a test paper structure analysis method based on span information and local attention, and the method comprises the following steps: obtaining an electronic test paper, and preprocessing multivariate data in the electronic test paper into a unified branch structural text; the method comprises the following steps: firstly, extracting semantic features of each row of test paper through a large-scale pre-training model, and modeling context information; then utilizing supervision attention based on span information and an auxiliary task based on span classification to explicitly model segmentation structure information of the test paper and feature information based on span, and splitting the test paper into different types of big question segments and corresponding types through a classifier; and further processing each obtained big question segment, splitting the big question segments into small questions by using a classifier and various previously extracted feature information, and ret</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114429118A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Test paper structure analysis method based on span information and local attention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20ZHENYUAN&rft.date=2022-05-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114429118A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true