Cross-modal Hash model training method and device, cross-modal Hash model coding method and device and electronic equipment

The invention provides a cross-modal Hash model training method, a cross-modal Hash model coding method, a cross-modal Hash model coding device and electronic equipment. The method relates to the technical field of artificial intelligence, and comprises the following steps: calling a cross-modal Has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TU RONGCHENG, LIU WEI, JIANG JIE, CAI CHENGFEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TU RONGCHENG
LIU WEI
JIANG JIE
CAI CHENGFEI
description The invention provides a cross-modal Hash model training method, a cross-modal Hash model coding method, a cross-modal Hash model coding device and electronic equipment. The method relates to the technical field of artificial intelligence, and comprises the following steps: calling a cross-modal Hash model to carry out dimension reduction Hash coding processing on a plurality of obtained sample pairs to obtain a plurality of Hash coding pairs; for each Hash code pair, determining a target data Hash point with a relatively large weight in the Hash data point pair at each position in the Hash code pair, and determining a binary code of the Hash code pair based on each target Hash data point; based on each hash code pair, the similarity matrix corresponding to the plurality of sample pairs, and the difference between each hash code pair and the corresponding binary code, determining the total quantization loss of the cross-modal hash model; and updating parameters of the cross-modal hash model based on the total
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114398980A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114398980A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114398980A3</originalsourceid><addsrcrecordid>eNqNi60OwjAURmsQBHiHi2cJyxCbXBrIFAq_3LQfrEn_aAuGl4cQ5ATqHHHOUrxkCjlXLmi2NHCe6KOwVBIbb_yNHMoUNLHXpPE0CjtS84sKenb4KixUScEbRbg_THTwZS0WV7YZmx9XYns6XuRQIYYRObKCRxnlua4PTdd27b5v_mneIrNGwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cross-modal Hash model training method and device, cross-modal Hash model coding method and device and electronic equipment</title><source>esp@cenet</source><creator>TU RONGCHENG ; LIU WEI ; JIANG JIE ; CAI CHENGFEI</creator><creatorcontrib>TU RONGCHENG ; LIU WEI ; JIANG JIE ; CAI CHENGFEI</creatorcontrib><description>The invention provides a cross-modal Hash model training method, a cross-modal Hash model coding method, a cross-modal Hash model coding device and electronic equipment. The method relates to the technical field of artificial intelligence, and comprises the following steps: calling a cross-modal Hash model to carry out dimension reduction Hash coding processing on a plurality of obtained sample pairs to obtain a plurality of Hash coding pairs; for each Hash code pair, determining a target data Hash point with a relatively large weight in the Hash data point pair at each position in the Hash code pair, and determining a binary code of the Hash code pair based on each target Hash data point; based on each hash code pair, the similarity matrix corresponding to the plurality of sample pairs, and the difference between each hash code pair and the corresponding binary code, determining the total quantization loss of the cross-modal hash model; and updating parameters of the cross-modal hash model based on the total</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220426&amp;DB=EPODOC&amp;CC=CN&amp;NR=114398980A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220426&amp;DB=EPODOC&amp;CC=CN&amp;NR=114398980A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TU RONGCHENG</creatorcontrib><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>JIANG JIE</creatorcontrib><creatorcontrib>CAI CHENGFEI</creatorcontrib><title>Cross-modal Hash model training method and device, cross-modal Hash model coding method and device and electronic equipment</title><description>The invention provides a cross-modal Hash model training method, a cross-modal Hash model coding method, a cross-modal Hash model coding device and electronic equipment. The method relates to the technical field of artificial intelligence, and comprises the following steps: calling a cross-modal Hash model to carry out dimension reduction Hash coding processing on a plurality of obtained sample pairs to obtain a plurality of Hash coding pairs; for each Hash code pair, determining a target data Hash point with a relatively large weight in the Hash data point pair at each position in the Hash code pair, and determining a binary code of the Hash code pair based on each target Hash data point; based on each hash code pair, the similarity matrix corresponding to the plurality of sample pairs, and the difference between each hash code pair and the corresponding binary code, determining the total quantization loss of the cross-modal hash model; and updating parameters of the cross-modal hash model based on the total</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi60OwjAURmsQBHiHi2cJyxCbXBrIFAq_3LQfrEn_aAuGl4cQ5ATqHHHOUrxkCjlXLmi2NHCe6KOwVBIbb_yNHMoUNLHXpPE0CjtS84sKenb4KixUScEbRbg_THTwZS0WV7YZmx9XYns6XuRQIYYRObKCRxnlua4PTdd27b5v_mneIrNGwQ</recordid><startdate>20220426</startdate><enddate>20220426</enddate><creator>TU RONGCHENG</creator><creator>LIU WEI</creator><creator>JIANG JIE</creator><creator>CAI CHENGFEI</creator><scope>EVB</scope></search><sort><creationdate>20220426</creationdate><title>Cross-modal Hash model training method and device, cross-modal Hash model coding method and device and electronic equipment</title><author>TU RONGCHENG ; LIU WEI ; JIANG JIE ; CAI CHENGFEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114398980A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>TU RONGCHENG</creatorcontrib><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>JIANG JIE</creatorcontrib><creatorcontrib>CAI CHENGFEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TU RONGCHENG</au><au>LIU WEI</au><au>JIANG JIE</au><au>CAI CHENGFEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cross-modal Hash model training method and device, cross-modal Hash model coding method and device and electronic equipment</title><date>2022-04-26</date><risdate>2022</risdate><abstract>The invention provides a cross-modal Hash model training method, a cross-modal Hash model coding method, a cross-modal Hash model coding device and electronic equipment. The method relates to the technical field of artificial intelligence, and comprises the following steps: calling a cross-modal Hash model to carry out dimension reduction Hash coding processing on a plurality of obtained sample pairs to obtain a plurality of Hash coding pairs; for each Hash code pair, determining a target data Hash point with a relatively large weight in the Hash data point pair at each position in the Hash code pair, and determining a binary code of the Hash code pair based on each target Hash data point; based on each hash code pair, the similarity matrix corresponding to the plurality of sample pairs, and the difference between each hash code pair and the corresponding binary code, determining the total quantization loss of the cross-modal hash model; and updating parameters of the cross-modal hash model based on the total</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114398980A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Cross-modal Hash model training method and device, cross-modal Hash model coding method and device and electronic equipment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TU%20RONGCHENG&rft.date=2022-04-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114398980A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true