Transaction information identification method and system based on graph neural network, and medium

The invention discloses a transaction information identification method and system based on a graph neural network, and a medium. The method comprises the steps of obtaining a to-be-identified text; performing feature extraction and label prediction on the to-be-recognized text to obtain a labeling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YU GUANGBO, GAN WEICHAO, ZHOU JINGYU, ZOU HONGYUE, LIN YUANPING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YU GUANGBO
GAN WEICHAO
ZHOU JINGYU
ZOU HONGYUE
LIN YUANPING
description The invention discloses a transaction information identification method and system based on a graph neural network, and a medium. The method comprises the steps of obtaining a to-be-identified text; performing feature extraction and label prediction on the to-be-recognized text to obtain a labeling result of entity elements in the to-be-recognized text; constructing a corresponding entity relation graph according to the labeling result of the entity elements; performing feature learning on the entity relation graph through a graph attention network and then outputting entity node feature vectors; and performing feature multi-classification on the entity node feature vector, and outputting a transaction element category of each entity node. According to the method, the relation between the entity elements is subjected to feature learning and classification by constructing the entity relation graph, the transaction mechanism category of each entity is recognized, classification judgment can be more accurately c
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114398881A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114398881A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114398881A3</originalsourceid><addsrcrecordid>eNqNizsOwjAQRNNQIOAOSw-FFQpToghERZU-2thrYiX-yOsIcXsswgGo3ozmzbrq24SeUWUbPFhvQnK4ZE0-W2PVUh3lIWhAr4HfnMlBj0wayvRMGAfwNCecCvIrpPHwNR1pO7tttTI4Me1-3FT727Vt7keKoSOOqKi8uuYhxKk-SynFpf7H-QCs8T6N</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Transaction information identification method and system based on graph neural network, and medium</title><source>esp@cenet</source><creator>YU GUANGBO ; GAN WEICHAO ; ZHOU JINGYU ; ZOU HONGYUE ; LIN YUANPING</creator><creatorcontrib>YU GUANGBO ; GAN WEICHAO ; ZHOU JINGYU ; ZOU HONGYUE ; LIN YUANPING</creatorcontrib><description>The invention discloses a transaction information identification method and system based on a graph neural network, and a medium. The method comprises the steps of obtaining a to-be-identified text; performing feature extraction and label prediction on the to-be-recognized text to obtain a labeling result of entity elements in the to-be-recognized text; constructing a corresponding entity relation graph according to the labeling result of the entity elements; performing feature learning on the entity relation graph through a graph attention network and then outputting entity node feature vectors; and performing feature multi-classification on the entity node feature vector, and outputting a transaction element category of each entity node. According to the method, the relation between the entity elements is subjected to feature learning and classification by constructing the entity relation graph, the transaction mechanism category of each entity is recognized, classification judgment can be more accurately c</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220426&amp;DB=EPODOC&amp;CC=CN&amp;NR=114398881A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220426&amp;DB=EPODOC&amp;CC=CN&amp;NR=114398881A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YU GUANGBO</creatorcontrib><creatorcontrib>GAN WEICHAO</creatorcontrib><creatorcontrib>ZHOU JINGYU</creatorcontrib><creatorcontrib>ZOU HONGYUE</creatorcontrib><creatorcontrib>LIN YUANPING</creatorcontrib><title>Transaction information identification method and system based on graph neural network, and medium</title><description>The invention discloses a transaction information identification method and system based on a graph neural network, and a medium. The method comprises the steps of obtaining a to-be-identified text; performing feature extraction and label prediction on the to-be-recognized text to obtain a labeling result of entity elements in the to-be-recognized text; constructing a corresponding entity relation graph according to the labeling result of the entity elements; performing feature learning on the entity relation graph through a graph attention network and then outputting entity node feature vectors; and performing feature multi-classification on the entity node feature vector, and outputting a transaction element category of each entity node. According to the method, the relation between the entity elements is subjected to feature learning and classification by constructing the entity relation graph, the transaction mechanism category of each entity is recognized, classification judgment can be more accurately c</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsOwjAQRNNQIOAOSw-FFQpToghERZU-2thrYiX-yOsIcXsswgGo3ozmzbrq24SeUWUbPFhvQnK4ZE0-W2PVUh3lIWhAr4HfnMlBj0wayvRMGAfwNCecCvIrpPHwNR1pO7tttTI4Me1-3FT727Vt7keKoSOOqKi8uuYhxKk-SynFpf7H-QCs8T6N</recordid><startdate>20220426</startdate><enddate>20220426</enddate><creator>YU GUANGBO</creator><creator>GAN WEICHAO</creator><creator>ZHOU JINGYU</creator><creator>ZOU HONGYUE</creator><creator>LIN YUANPING</creator><scope>EVB</scope></search><sort><creationdate>20220426</creationdate><title>Transaction information identification method and system based on graph neural network, and medium</title><author>YU GUANGBO ; GAN WEICHAO ; ZHOU JINGYU ; ZOU HONGYUE ; LIN YUANPING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114398881A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YU GUANGBO</creatorcontrib><creatorcontrib>GAN WEICHAO</creatorcontrib><creatorcontrib>ZHOU JINGYU</creatorcontrib><creatorcontrib>ZOU HONGYUE</creatorcontrib><creatorcontrib>LIN YUANPING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YU GUANGBO</au><au>GAN WEICHAO</au><au>ZHOU JINGYU</au><au>ZOU HONGYUE</au><au>LIN YUANPING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Transaction information identification method and system based on graph neural network, and medium</title><date>2022-04-26</date><risdate>2022</risdate><abstract>The invention discloses a transaction information identification method and system based on a graph neural network, and a medium. The method comprises the steps of obtaining a to-be-identified text; performing feature extraction and label prediction on the to-be-recognized text to obtain a labeling result of entity elements in the to-be-recognized text; constructing a corresponding entity relation graph according to the labeling result of the entity elements; performing feature learning on the entity relation graph through a graph attention network and then outputting entity node feature vectors; and performing feature multi-classification on the entity node feature vector, and outputting a transaction element category of each entity node. According to the method, the relation between the entity elements is subjected to feature learning and classification by constructing the entity relation graph, the transaction mechanism category of each entity is recognized, classification judgment can be more accurately c</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114398881A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Transaction information identification method and system based on graph neural network, and medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YU%20GUANGBO&rft.date=2022-04-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114398881A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true